【题目】如图,在△ABC中,AB=AC=5,BC=6,点M在△ABC内,AM平分∠BAC.点E与点M在AC所在直线的两侧,AE⊥AB,AE=BC,点N在AC边上,CN=AM,连接ME,BN.
(1)补全图形;
(2)求ME:BN的值;
(3)问:点M在何处时BM+BN取得最小值?确定此时点M的位置,并求此时BM+BN的最小值.
【答案】(1)补图见解析;(2)ME:BN=1;(3)当点M在∠BAC的平分线上运动到它与BE的交点处时,BM+BN取得最小值,为.
【解析】
(1)根据题意补全图形;
(2)延长AM交BC于点D,证明△AME≌△CNB,根据全等三角形的性质得到ME=BN,得到答案;
(3)根据ME=BN,得到BM+BN=BM+ME,根据两点之间线段最短、勾股定理计算即可.
(1)补全图形见图1:
(2)如图2,延长AM交BC于点D,
∵AB=AC,AM平分∠BAC,
∴∠CAD=∠BAD,AD⊥BC,
∵AE⊥AB,
∴∠MAE+∠BAD=90°,
∵AD⊥BC,
∴∠C+∠CAD=90°,
∴∠MAE=∠C,
在△AME和△CNB中,
,
∴△AME≌△CNB(SAS),
∴ME=BN,
∴ME:BN=1;
(3)∵ME=BN,
∴BM+BN=BM+ME,
∴当点M在∠BAC的平分线上运动到它与BE的交点处时,BM+BN取得最小值,
∵AB=AC=5,BC=6,
∴AE=BC=6,
∴BE= ,
∴BM+BN的最小值为.
科目:初中数学 来源: 题型:
【题目】已知在平面直角坐标系内,的三个顶点的分别为,,(正方形网格中每个小正方形的边长是一个单位长度).
(1)在网格内画出向下平移2个单位长度得到的,点的坐标是________;
(2)以点为位似中心,在网格内画出,使与位似,且位似比为,点的坐标是________;
(3)的面积是________平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点A为⊙0外一点,过A作⊙O的切线与⊙O相切于点P,连接PO并延长至圆上一点B连接AB交⊙O于点C,连接OA交⊙O于点D连接DP且∠OAP=∠DPA。
(1)求证:PO=PD
(2)若AC=,求⊙O的半径。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.
(1)证明:OD∥BC;
(2)若AD是⊙O的切线,连接BD交于⊙O于点F,连接EF,且OA=1,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AE是△ABC的角平分线.AE的垂直平分线交AB于点O,以点O为圆心,OA为半径作⊙O,交AB于点F.
(1)求证:BC是⊙O的切线;
(2)若AC=2,tanB,求⊙O的半径r的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在 10×6 的正方形网格中,每个小正方形的边长均为 1,线段 AB 的端点 A、B 均在小正方形的顶点上.
(1)在图中画出以 AB 为一腰的等腰△ABC,点 C 在小正方形顶点上,△ABC 为钝角三角形,且△ABC 的面积为;
(2)在图中画出以 AB 为斜边的直角三角形 ABD, 点 D在小正方形的顶点上,且 AD>BD;
(3)连接 CD,请你直接写出线段 CD 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的顶点为A(-3,-3),此抛物线交x轴于O、 B两点.
(1)求此抛物线的解析式.
(2)求△AOB的面积 .
(3)若抛物线上另有点P满足S△POB=S△AOB,请求出P坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个盒子中有1个白球和2个红球,这些球除颜色外都相同.
⑴如果从盒子中随机摸出1个球,摸出红色球的概率为_____________;
⑵若从盒子中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,请通过列表或画树状图的方法,求两次摸到不同颜色球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生对“第二十届中国哈尔滨冰雪大世界”主题景观的了解情况,在全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图的不完整的两幅统计图:
(1)本次调查共抽取了多少名学生;
(2)通过计算补全条形图;
(3)若该学校共有名学生,请你估计该学校选择“比较了解”项目的学生有多少名?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com