精英家教网 > 初中数学 > 题目详情

已知,如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD中点.
求证:(1)△AOC≌△BOD;
(2)四边形AFBE是平行四边形.

证明:(1)∵AC∥BD,
∴∠C=∠D,
在△AOC和△BOD中

∴△AOC≌△BOD(AAS);

(2)∵△AOC≌△BOD
∴CO=DO.
∵E、F分别是OC、OD的中点,
∴OF=OD,OE=OC,
∴EO=FO 又∵AO=BO.
∴四边形AFBE是平行四边形.
分析:(1)利用已知条件和全等三角形的判定方法即可证明△AOC≌△BOD;
(2)此题已知AO=BO,要证四边形AFBE是平行四边形,根据全等三角形,只需证OE=OF就可以了.
点评:本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知:如图,AB、AC分别切⊙O于B、C,D是⊙O上一点,∠D=40°,则∠A的度数等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB,CD相交于点O,且OA•OD=OB•OC,求证:AC∥DB.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.
(1)求证:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求
AC
的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

29、已知,如图,AB∥CD,∠EAB+∠FDC=180°.求证:AE∥FD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB=AC,DB=DC,求证:∠B=∠C.

查看答案和解析>>

同步练习册答案