精英家教网 > 初中数学 > 题目详情
如图,⊙O是Rt△ABC中以直角边AB为直径的圆,⊙O与斜边AC交于D,过D作DH⊥AB于H,又过D作直线DE交BC于点E,使∠HDE=2∠A.
求证:(1)DE是⊙O的切线;(2)OE是Rt△ABC的中位线.
(1)连接OD,
则∠HOD=2∠A,
已知∠HDE=2∠A,
则∠HOD=∠HDE,
∵HD⊥AB,
∴∠HOD+∠HDO=90°,
∴∠HDE+∠HDO=90°,
即OD⊥DE,
又OD是半径,
∴DE是⊙O的切线;

(2)∵DE是⊙O的切线,∠ABC=90°,
∴∠OBE=∠ODE=90°,
又OB=OD,OE=OE,
∴Rt△BOE≌Rt△DOE,
∴∠BOE=∠DOE,
∴∠HOD=∠BOE+∠DOE=2∠BOE,
又∠HOD=2∠A,
∴∠BOE=∠A,
∴OEAD,
而O是AB的中点,
故OE是Rt△ABC的中位线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AC为⊙O直径,B为AC延长线上的一点,BD交⊙O于点D,∠BAD=∠B=30°.
(1)求证:BD是⊙O的切线;
(2)AB=3CB吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点P是⊙O外一点,PA切⊙O于点A,∠O=60°,则∠P度数为______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙P与x轴相切于坐标原点O,点A(0,2)是⊙P与y轴的交点,点B(-2
2
,0)在x轴上.连接BP交⊙P于点C,连接AC并延长交x轴于点D.
(1)求线段BC的长;
(2)求直线AC的关系式;
(3)当点B在x轴上移动时,是否存在点B,使△BOP相似于△AOD?若存在,求出符合条件的点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图(1),AB是⊙O的直径,射线AT⊥AB,点P是射线AT上的一个动点(P与A不重合),PC与⊙O相切于C,过C作CE⊥AB于E,连接BC并延长BC交AT于点D,连接PB交CE于F.
(1)请你写出PA、PD之间的关系式,并说明理由;
(2)请你找出图中有哪些三角形的面积被PB分成两等分,并加以证明;
(3)设过A、C、D三点的圆的半径是R,当CF=
1
4
R时,求∠APC的度数,并在图(2)中作出点P.(要求尺规作图,不写作法,但要保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,两个半圆中,长为4的弦,AB与直径CD平行且与小半圆相切,那么图中阴影部分的面积等于多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知⊙O的半径为3cm,圆心O到直线l的距离是2m,则直线l与⊙O的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,割线PCD交⊙O于C、D,∠PAC=∠PDA.
(1)求证:PA是⊙O的切线;
(2)若PA=6,CD=3PC,求PD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm半圆O以2cm/s的速度从左向右运动,在运动过程中,点D、E始终在直线BC上.设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切?

查看答案和解析>>

同步练习册答案