精英家教网 > 初中数学 > 题目详情
如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)题中的抛物线上有一个动点P,当点P在抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标;
(3)设(1)题中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(1)∵抛物线y=x2+bx+c与x轴的两个交点分别为A(-1,0),B(3,0),
(-1)2-b+c=0
32+3b+c=0

解得
b=-2
c=-3

∴所求解析式为y=x2-2x-3.

(2)设点P的坐标为(x,y),
由题意:S△PAB=
1
2
×4|y|=8,
∴|y|=4,
∴y=±4.
当y=4时,x2-2x-3=4,
∴x1=2
2
+1,x2=-2
2
+1;
当y=-4时,x2-2x-3=-4,∴x=1,
∴满足条件的点P有3个,
即(2
2
+1,4),(-2
2
+1,4),(1,-4).

(3)在抛物线对称轴上存在点Q,使△QAC的周长最小.
∵AC长为定值,
∴要使△QAC的周长最小,只需QA+QC最小,
∵点A关于对称轴直线x=1的对称点是(3,0),
∴Q是直线BC与对称轴直线x=1的交点,
设过点B,C的直线的解析式y=kx-3,把B(3,0)代入,
∴3k-3=0,
∴k=1,
∴直线BC的解析式为y=x-3,
把x=1代入上式,
∴y=-2,
∴Q点坐标为(1,-2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=
1
4
x2+bx+c
经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.
(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,
①求△ACQ周长的最小值;
②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c与y轴的交点为C,顶点为M,直线CM的解析式y=-x+2并且线段CM的长为2
2

(1)求抛物线的解析式;
(2)设抛物线与x轴有两个交点A(x1,0)、B(x2,0),且点A在B的左侧,求线段AB的长;
(3)若以AB为直径作⊙N,请你判断直线CM与⊙N的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(个008•枣庄)在直角坐标平面中,O为坐标原点,二次函数y=-x+(k-1)x+4的图象与y轴交于点A,与x轴的负半轴交于点B,且S△OAB=a.
(1)求点A与点B的坐标;
(个)求此二次函数的解析式;
(3)如果点d在x轴上,且△ABd是等腰三角形,求点d的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且|OC|=3|OA|
(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式;
②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:已知抛物线y1=-x2-2x+8的图象交x轴于点A,B两点,与y轴的正半轴交于点C.抛物线y2经过B、C两点且对称轴为直线x=3.
(1)确定A、B、C三点的坐标;
(2)求抛物线y2的解析式;
(3)若过点(0,3)且平行于x轴的直线与抛物线y2交于M、N两点,以MN为一边,抛物线y2上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,把矩形COAB绕点C顺时针旋转α角,得到矩形CFED.设FC与AB交于点H,且A(0,4),C(6,0)(如图1).
(1)当α=60°时,△CBD的形状是______;
(2)当AH=HC时,求直线FC的解析式;
(3)当α=90°时,(如图2).请探究:经过点D,且以点B为顶点的抛物线,是否经过矩形CFED的对称中心M,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

利民商店经销甲、乙两种商品.现有如下信息:

请根据以上信息,解答下列问题:
(1)甲、乙两种商品的进货单价各多少元?
(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MNBC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切;
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?

查看答案和解析>>

同步练习册答案