精英家教网 > 初中数学 > 题目详情

【题目】如图,AB为⊙O的直径,EF切⊙O于点D,过点B作BH⊥EF于点H,交⊙O于点C,连接BD.
(1)求证:BD平分∠ABH;
(2)如果AB=12,BC=8,求圆心O到BC的距离.

【答案】
(1)证明:连接OD,

∵EF是⊙O的切线,

∴OD⊥EF,

又∵BH⊥EF,

∴OD∥BH,

∴∠ODB=∠DBH,

∵OD=OB,

∴∠ODB=∠OBD

∴∠OBD=∠DBH,

即BD平分∠ABH.


(2)解:过点O作OG⊥BC于点G,则BG=CG=4,

在Rt△OBG中,OG= = =


【解析】(1)连接OD,根据切线的性质以及BH⊥EF,即可证得OD∥BC,然后根据等边对等角即可证得;(2)过点O作OG⊥BC于点G,则利用垂径定理即可求得BG的长,然后在直角△OBG中利用勾股定理即可求解.
【考点精析】认真审题,首先需要了解勾股定理的概念(直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2),还要掌握垂径定理(垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】图①为北斗七星的位置图,图②将北斗七星分别标为ABCDEFG,将ABCDEF顺次首尾连接,若AF恰好经过点G,且AFDE,∠B=∠C10°,∠D=∠E105°.

(1)求∠F的度数;

(2)计算∠B-∠CGF的度数是______(直接写出结果)

(3)连接AD,∠ADE与∠CGF满足怎样数量关系时,BCAD,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是线段DE上一点,∠BAC=90°,AB=ACBDDECEDE

1)求证:DE=BD+CE

2)如果是如图2这个图形,BDCEDE有什么数量关系?并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.

若某户居民月份用水,则应收水费:元.

1)若该户居民月份用水,则应收水费______元;

2)若该户居民月份共用水月份用水量超过月份),共交水费元,则该户居民月份各用水多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是直线AC上一点,OB是一条射线,OD平分∠AOBOE∠BOC内部,∠BOE∠EOC,∠DOE70°,求∠EOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)2x3y·(4xy3z4)

(2)5a2·(3a3)2

(3)(x2y)3·6x3y4·(3xy2)2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在等腰RtABC中,ACB=90o,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE连接DE、DF、EF

1求证:ADF≌△CEF

2试证明DFE是等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,顶点A、B的坐标分别是A(1,0),B(0,﹣2),顶点C、D在双曲线 上,边AD与y轴相交于点E, =10,则k的值是( )

A.-16
B.-9
C.-8
D.-12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC的两条外角平分线APCP相交于点PPH⊥ACH.若∠ABC=60°,则下面的结论:①∠ABP=30°②∠APC=60°③△ABC≌△APC④PABC⑤∠APH=∠BPC,其中正确结论的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步练习册答案