精英家教网 > 初中数学 > 题目详情
如图,一次函数y1=kx+b的图象与反比例函数y2=
mx
的图象相交于A、B两点,试利用图中条件,求y1和y2的解析式.
分析:由一次函数与反比例函数交于A与B两点,将A坐标代入反比例解析式中求出m的值,确定出反比例解析式,将B坐标代入反比例解析式中求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式中,得到关于k与b的方程组,求出方程组的解得到k与b的值,即可确定出一次函数解析式.
解答:解:∵一次函数与反比例函数交于A(-2,1),B(1,n),
∴将A坐标代入反比例解析式得:1=
m
-2
,即m=-2,
∴反比例解析式为y2=-
2
x

将B坐标代入反比例解析式得:n=-
2
1
=-2,即B(1,-2),
将A与B坐标代入一次函数解析式得:
-2k+b=1
k+b=-2

解得:
k=-1
b=-1

故一次函数解析式为y1=-x-1.
点评:此题考查了一次函数与反比例函数的交点问题,利用了待定系数法,待定系数法是数学中重要的思想方法,做题时注意灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,一次函数y1=kx+b的图象与反比例函数y2=
m
x
的图象交于A、B两点,点A、B的横坐标分别为-2、1.当y1>y2时,自变量x的取值范围是(  )
A、-2<x<1
B、0<x<1
C、x<-2和0<x<1
D、-2<x<1和x>1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=
mx
 
(m≠0)
的图象交于二、四象限内的A、B两点,过A作AC⊥x轴于点C,连接OA、OB、BC.已知OC=4,tan∠OAC=2,点B的纵坐标为-6.
(1)求反比例函数和直线AB的解析式;
(2)求四边形OACB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+1(k≠0)与反比例函数y2=
mx
(m≠0)的图象有公共点A(1,2).直线l⊥x轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积?
(3)当y1>y2时,请直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,一次函数y1=kx+b与反比例函数y2=-
6x
交于点A(m,6)、B(3,n).
(1)求一次函数的关系式;
(2)求△AOB的面积;
(3)直接写出y1>y2时x的取值范围.

查看答案和解析>>

同步练习册答案