分析 由平行线的判定与性质即可得出结论.
解答 解:∵∠BAE+∠AED=180°,(已知)
∴AB∥CD,(同旁内角互补,两直线平行)
∴∠BAE=∠CEA.(两直线平行,内错角相等)
又∵∠M=∠N (已知)
∴AN∥ME(内错角相等,两直线平行)
∴∠BAE=∠MEA.(两直线平行,内错角相等)
∴∠BAE-∠MAE=∠CEA-∠MEA.(等式性质1)
即:∠BAN=∠CEM.(等量代换)
故答案为:同旁内角互补,两直线平行;∠BAE;∠CEA; AN,ME;内错角相等,两直线平行; 两直线平行,内错角相等.
点评 本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | (3,0) | B. | (3,-1) | C. | (3,-3) | D. | (-1,3) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
年龄 | 26 | 42 | 57 |
健康指数 | 97 | 79 | 72 |
年龄 | 23 | 25 | 26 | 32 | 33 | 37 | 39 | 42 | 48 | 52 |
健康指数 | 93 | 89 | 90 | 83 | 79 | 75 | 80 | 69 | 68 | 60 |
年龄 | 22 | 29 | 31 | 36 | 39 | 40 | 43 | 46 | 51 | 55 |
健康指数 | 94 | 90 | 88 | 85 | 82 | 78 | 72 | 76 | 62 | 60 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
植树品种 | 甲种 | 乙种 | 丙种 | 丁种 |
植树棵数 | 150 | 125 | 125 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com