【题目】如图,抛物线y=ax2+bx+6经过点A(﹣2,0),B(4,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(1<m<4)连接BC,DB,DC.
(1)求抛物线的函数解析式;
(2)△BCD的面积是否存在最大值,若存在,求此时点D的坐标;若不存在,说明理由;
(3)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,请直接写出点M的坐标;若不存在,请说明理由.
【答案】(1);(2)存在,D的坐标为(2,6);(3)存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形,点M的坐标为:(2,0)或(6,0)或(,0)或(,0).
【解析】
(1)根据点,利用待定系数法求解即可;
(2)先根据函数解析式求出点C、D坐标,再将过点D作y轴的平行线交BC于点E,利用待定系数法求出直线BC的函数解析式,从而得出点E坐标,然后根据得出的面积表达式,最后利用二次函数的性质求出的面积取最大值时m的值,从而可得点D坐标;
(3)根据平行四边形的定义分两种情况:BD为平行四边形的边和BD为平行四边形的对角线,然后先分别根据平行四边形的性质求出点N坐标,从而即可求出点M坐标.
(1)∵抛物线经过点
∴
解得
故抛物线的解析式为;
(2)的面积存在最大值.求解过程如下:
,当时,
由题意,设点D坐标为,其中
如图1,过点D作y轴的平行线交BC于点E
设直线BC的解析式为
把点代入得
解得
∴直线BC的解析式为
∴可设点E的坐标为
由二次函数的性质可知:当时,随m的增大而增大;当时,随m的增大而减小
则当时,取得最大值,最大值为6
此时,
故的面积存在最大值,此时点D坐标为;
(3)存在.理由如下:
由平行四边形的定义,分以下两种情况讨论:
①当BD是平行四边形的一条边时
如图2所示:M、N分别有三个点
设点
∴点N的纵坐标为绝对值为6
即
解得(与点D重合,舍去)或或
则点的横坐标分别为
∴点M坐标为或或
即点M坐标为或或
②如图3,当BD是平行四边形的对角线时
∴此时,点N与C重合,,且点M在点B右侧
,即
综上,存在这样的点M,使得以点为顶点的四边形是平行四边形.点M坐标为或或或.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l2于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l2于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某货站传送货物的平面示意图为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角使其由改为,已知原传送带长为4米.
(1)求新传送带的长度;(结果保留根号)
(2)如果需要在货物着地点的左侧留出2米的通道,试判断距离点5米的货物是否需要挪走,并说明理由(结果精确到0.1米参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,点B的坐标为(2m,-m).
(1)求出m值并确定反比例函数的表达式;
(2)请直接写出当x<m时,y2的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某品牌汽车公司销售部为了制定下个月的销售计划,对 20 位销售员本月的销售量进行了 统计,绘制成如图所示的统计图,则这 20 位销售人员本月销售量的平均数、中位数、众数 分别是(单位:辆)( )
A.18.4,16,16B.18.4,20,16
C.19, 16,16D.19, 20,16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线的图象经过点,,其对称轴为直线,过点作轴交抛物线于点,的平分线交线段于点,点是抛物线上的一个动点,设其横坐标为.
(1)求抛物线的解析式;
(2)若动点在、间的抛物线上,连结,,求四边形面积与之间的函数关系式;
(3)如图2,是抛物线的对称轴上的一点,在对称轴左侧的抛物线上是否存在点使成为以点为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直线m上摆放着三个正三角形:△ABC,△HFG,△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC,GN∥DC.设图中三个平行四边形的面积依次是S1、S2、S3,若S1+S3=10,则S2=___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=,则△CEF的面积是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com