精英家教网 > 初中数学 > 题目详情
(2010•湘潭)Rt△ABC与Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起,CB与DE重合.
(1)求证:四边形ABFC为平行四边形;
(2)取BC中点O,将△ABC绕点O顺时钟方向旋转到如图(二)中△A′B′C′位置,直线B'C'与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想;
(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)

【答案】分析:(1)已知△ABC≌△FCB,根据全等三角形的性质可知AB=CF,AC=BF,根据两组对边分别相等的四边形是平行四边形即可得到结论.
(2)根据已知利用AAS判定△COQ≌△BOP,根据全等三角形的性质即可得到OP=OQ.
(3)根据对角线互相垂直的平行四边形的菱形进行分析即可.
解答:(1)证明:∵△ABC≌△FCB,(1分)
∴AB=CF,AC=BF.(2分)
∴四边形ABFC为平行四边形.(3分)
(用其它判定方法也可)

(2)解:OP=OQ,(4分)
理由如下:∵OC=OB,∠COQ=∠BOP,∠OCQ=∠PBO,
∴△COQ≌△BOP.(6分)
∴OQ=OP.(7分)
(用平行四边形对称性证明也可)

(3)解:90°.
理由:∵OP=OQ,OC=OB,
∴四边形PCQB为平行四边形,
∵BC⊥PQ,
∴四边形PCQB为菱形.(8分)
点评:此题考查学生对平行四边形的判定及性质,全等三角形的判定,菱形的判定等知识的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2010•湘潭)Rt△ABC与Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起,CB与DE重合.
(1)求证:四边形ABFC为平行四边形;
(2)取BC中点O,将△ABC绕点O顺时钟方向旋转到如图(二)中△A'B'C'位置,直线B'C'与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想;
(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•湘潭)不等式:2(x-1)<x+1的非负整数解有
3
3
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•湘潭)我市某经济开发区去年总产值100亿元,计划两年后总产值达到121亿元,则平均年增长率为
10
10
%.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次根式》(02)(解析版) 题型:选择题

(2010•湘潭)函数中自变量的取值范围是( )
A.x≥1
B.x≤1
C.x<1
D.x>1

查看答案和解析>>

科目:初中数学 来源:2010年湖南省湘潭市中考数学试卷(解析版) 题型:解答题

(2010•湘潭)如图,直线y=-x+6与x轴交于点A,与y轴交于点B,以线段AB为直径作⊙C,抛物线y=ax2+bx+c过A、C、O三点.
(1)求点C的坐标和抛物线的解析式;
(2)过点B作直线与x轴交于点D,且OB2=OA•OD,求证:DB是⊙C的切线;
(3)抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为直角梯形?如果存在,求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案