精英家教网 > 初中数学 > 题目详情

如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:
(甲) 连接BD、CE,两线段相交于P点,则P即为所求
(乙) 先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.
对于甲、乙两人的作法,下列判断何者正确?


  1. A.
    两人皆正确
  2. B.
    两人皆错误
  3. C.
    甲正确,乙错误
  4. D.
    甲错误,乙正确
C
分析:求出五边形的每个角的度数,求出∠ABP、∠AEP、∠BPE的度数,根据平行四边形的判定判断即可.
解答:
解:甲正确,乙错误,
理由是:如图,∵正五边形的每个内角的度数是=108°,AB=BC=CD=DE=AE,
∴∠DEC=∠DCE=×(180°-108°)=36°,
同理∠CBD=∠CDB=36°,
∴∠ABP=∠AEP=108°-36°=72°,
∴∠BPE=360°-108°-72°-72°=108°=∠A,
∴四边形ABPE是平行四边形,即甲正确;

∵∠BAE=108°,
∴∠BAM=∠EAM=54°,
∵AB=AE=AP,
∴∠ABP=∠APB=×(180°-54°)=63°,∠AEP=∠APE=63°,
∴∠BPE=360°-108°-63°-63°≠108°,
即∠ABP=∠AEP,∠BAE≠∠BPE,
∴四边形ABPE不是平行四边形,即乙错误;
故选C.
点评:本题考查了正五边形的内角和定理,等腰三角形的性质,三角形的内角和定理,平行四边形的判定的应用,注意:有两组对角分别相等的四边形是平行四边形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:
(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;
(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.
对于甲、乙两人的作法,下列判断何者正确(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为圆O的直径.甲、乙两人想在圆上找B,C两点,作一个正三角形ABC,其作法如下:精英家教网
甲:1.作OD中垂线,交圆于B,C两点,
2.连AB,AC,△ABC即为所求.
乙:1.以D为圆心,OD长为半径画弧,交圆于B,C两点,
2.连AB,BC,CA,△ABC即为所求.
对于甲、乙两人的作法,下列判断何者正确(  )
A、甲、乙皆正确B、甲、乙皆错误C、甲正确、乙错误D、甲错误、乙正确

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•台湾)如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:
(甲) 连接BD、CE,两线段相交于P点,则P即为所求
(乙) 先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.
对于甲、乙两人的作法,下列判断何者正确?(  )

查看答案和解析>>

科目:初中数学 来源:2013年台湾省中考数学试卷(解析版) 题型:选择题

如图,甲、乙两人想在正五边形ABCDE内部找一点P,使得四边形ABPE为平行四边形,其作法如下:
(甲) 连接BD、CE,两线段相交于P点,则P即为所求
(乙) 先取CD的中点M,再以A为圆心,AB长为半径画弧,交AM于P点,则P即为所求.
对于甲、乙两人的作法,下列判断何者正确?( )

A.两人皆正确
B.两人皆错误
C.甲正确,乙错误
D.甲错误,乙正确

查看答案和解析>>

同步练习册答案