【题目】某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:
解答下列问题:
(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=________,b=________.
(2)所有营业员月销售额的中位数和众数分别是多少?
(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.
【答案】(1)10;60;(2)中位数为21、众数为20;(3)奖励标准应定为21万元,理由见解析
【解析】试题分析:
(1)由统计图中的信息可知:不称职的有2人,占总数的6.7%,由此可得总人数为:2÷6.7%=30(人);而条形统计图中的信息显示:优秀的有3人,称职的有18人,由此可得3÷30×100%=10%,18÷30×100%=60%,即a=10,b=60;
(2)由条形统计图可知,这组数据的众数为20,中位数是按大小排列后的第15和16个数据的平均数,而由第15和16个数据都是21可知中位数是21;
(3)由题意可知:奖励标准应该定为21万元,因为由(2)可知,这组数据的中位数是21万,因此按要使一半左右的人获得奖励,应该以中位数作为奖励的标准.
试题解析:
(1)由统计图中信息可得:该商场进入统计的营业员总数=2÷6.7%=30(人);
∵优秀的有3人,
∴a%=3÷30×100%=10%,
∴a=10;
∵称职的有18人,
∴b%=18÷30×100%=60%,
∴b=60;
(2)由条形统计图可知,这组数据的众数为20;
由条件下统计图可知,这30个数据按从小到大排列后,第15个数和第16个数都是21,
∴这组数据的中位数为21;
(3)∵要使一半左右的人获得奖励,
∴奖励标准应该以中位数为准,
∴奖励标准应定为21万元.
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程有两个相等的实数根,其中正确的结论是______.(只填序号即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知线段MN=3cm,在线段MN上取一点P,使PM=PN;延长线段MN到点A,使AN=MN;延长线段NM到点B,使BN=3BM.
(1)根据题意,画出图形;
(2)求线段AB的长;
(3)试说明点P是哪些线段的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.
小明画出树状图如图所示:
小华列出表格如下:
回答下列问题:
(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后 (填“放回”或“不放回”),再随机抽出一张卡片;
(2)根据小华的游戏规则,表格中①表示的有序数对为 ;
(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数轴上点A,B,C的位置如图,点C是线段AB的中点,点A表示的数比点C表示的数的两倍还大3,点B和点C表示的数是互为相反数,点C表示的数是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2…、正方形AnBnnCn﹣1按如图方式放置,点A1、A2、A3、…在直线y=x+1上,点C1、C2、C3、…在x轴上.已知A1点的坐标是(0,1),则点B3的坐标为_____,点Bn的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy 中,点A 的坐标为(1,0),P 是第一象限内任意一点,连接PO,PA,若∠POA=m°,∠PAO=n°,则我们把(m°,n°)叫做点P 的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).若点P到x轴的距离为,则m+n 的最小值为___.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com