精英家教网 > 初中数学 > 题目详情

【题目】某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:

解答下列问题:

(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=________,b=________.

(2)所有营业员月销售额的中位数和众数分别是多少?

(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.

【答案】(1)10;60;(2)中位数为21、众数为20;(3)奖励标准应定为21万元,理由见解析

【解析】试题分析:

(1)由统计图中的信息可知:不称职的有2人,占总数的6.7%,由此可得总人数为:2÷6.7%=30(人);而条形统计图中的信息显示:优秀的有3人,称职的有18人,由此可得3÷30×100%=10%,18÷30×100%=60%,a=10,b=60;

(2)由条形统计图可知,这组数据的众数为20,中位数是按大小排列后的第1516个数据的平均数,而由第1516个数据都是21可知中位数是21;

(3)由题意可知:奖励标准应该定为21万元,因为由(2)可知,这组数据的中位数是21万,因此按要使一半左右的人获得奖励,应该以中位数作为奖励的标准.

试题解析

(1)由统计图中信息可得:该商场进入统计的营业员总数=2÷6.7%=30(人);

优秀的有3人,

∴a%=3÷30×100%=10%,

∴a=10;

称职的有18人,

∴b%=18÷30×100%=60%,

∴b=60;

(2)由条形统计图可知,这组数据的众数为20;

由条件下统计图可知30个数据按从小到大排列后,第15个数和第16个数都是21,

这组数据的中位数为21;

(3)∵要使一半左右的人获得奖励,

奖励标准应该以中位数为准

奖励标准应定为21万元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与y轴正半轴相交,其顶点坐标为(1),下列结论:abc0a=ba=4c﹣4方程有两个相等的实数根,其中正确的结论是______.(只填序号即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段MN=3cm,在线段MN上取一点P,使PMPN;延长线段MN到点A,使ANMN;延长线段NM到点B,使BN=3BM.

(1)根据题意,画出图形;

(2)求线段AB的长;

(3)试说明点P是哪些线段的中点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在不透明的袋子中有四张标着数字1234的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.

小明画出树状图如图所示:

小华列出表格如下:

回答下列问题:

1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后 (填放回不放回),再随机抽出一张卡片;

2)根据小华的游戏规则,表格中表示的有序数对为

3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上点A,B,C的位置如图,C是线段AB的中点,A表示的数比点C表示的数的两倍还大3,B和点C表示的数是互为相反数,C表示的数是__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形A1B1C1OA2B2C2C1A3B3C3C2、正方形AnBnnCn1按如图方式放置,点A1A2A3、…在直线yx+1上,点C1C2C3、…在x轴上.已知A1点的坐标是(01),则点B3的坐标为_____,点Bn的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O是直线CD上的点,OA平分∠BOCOE平分∠BOD,∠AOC=35°

(1) 求∠BOE的度数,

(2)求∠COE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册.于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy 中,点A 的坐标为(1,0),P 是第一象限内任意一点,连接PO,PA,若∠POA=m°,∠PAO=n°,则我们把(m°,n°)叫做点P 的“双角坐标”.例如,点(1,1)的“双角坐标”为(45°,90°).若点P到x轴的距离为,则m+n 的最小值为___

查看答案和解析>>

同步练习册答案