已知抛物线的对称轴为直线,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).
(1)求抛物线的解析式;
(2)若点P在抛物线上运动(点P异于点A),
①如图1,当△PBC的面积与△ABC的面积相等时,求点P的坐标;
②如图2,当∠PCB =∠BCA时,求直线CP的解析式.
图1 图2
解:(1)由题意,得,解得
∴抛物线的解析式为.
(2)①令,解得 ∴B(3, 0)
则直线BC的解析式为 当点P在x轴上方时,如图1,
过点A作直线BC的平行线交抛物线于点P,∴设直线AP的解析式为,
∵直线AP过点A(1,0),∴直线AP的解析式为,交y轴于点.
解方程组,得 ∴点
当点P在x轴下方时,如图1,
根据点,可知需把直线BC向下平移2个单位,此时交抛物线于点,
得直线的解析式为,
解方程组,得
∴
综上所述,点P的坐标为:
,
②过点B作AB的垂线,交CP于点F.如图2,∵
∴OB=OC,∴∠OCB=∠OBC=45° ∴∠CBF=∠ABC=45°
又∵∠PCB=∠BCA,BC=BC ∴△ACB≌△FCB
∴BF=BA=2,则点F(3,-2)又∵CP过点F,点C ∴直线CP的解析式为.
科目:初中数学 来源: 题型:
如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数).其中正确结论的有
A.①②③ B.①③④ C.③④⑤ D.②③⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动.以AP为边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形APDE和梯形BCFQ重叠部分的面积为Scm2.
(1)当t=_____s时,点P与点Q重合;
(2)当t=_____s时,点D在QF上;
(3)当点P在Q,B两点之间(不包括Q,B两点)时,
求S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
抛物线与y轴交于点C,与直线y=x交于A(-2,-2)、B(2,2)两点.如图,线段MN在直线AB上移动,且,若点M的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以P、M、Q、N为顶点的四边形否为平行四边形?若能,请求出m的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,直线与
抛物线交于A,B两点,点A在x轴上,点B的横坐标为-8.
(1)求抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点(不与点A,B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值.
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,一块直角三角板ABC的斜边AB与量角器的直径重合,点D对应54°,则∠BCD的度数为( )
A. 27° B. 54° C. 63° D. 36°
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知直线交坐标轴于A,B两点,以线段AB为边向上作矩形ABCD,AB:AD=1:2,过点A,D,C的抛物线与直线另一个交点为E.
(1)求抛物线的解析式;
(2)若矩形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设矩形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;
(3)在(2)的条件下,抛物线与矩形一起平移,同时D落在x轴上时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
数学课上,老师用多媒体给同学们放了由魔术界当红艺人刘谦表演的的神奇的障眼法“硬币穿玻璃”魔术,敏捷的身手、幽默的语言把同学们逗得乐不可支。看完后老师说:“今天我也来当一回魔术师给你们现场表演一个数学魔术。”说完便在黑板上画出下面两个图:
请你借助数学知识帮助同学们分析老师画的这两个图,通过计算验证说明图1到图2的拼接是否可行,若不行请说明理由,并画出正确的拼接图
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com