A. | 86° | B. | 76° | C. | 66° | D. | 52° |
分析 首先连接BF,易证得△ABF≌△ADF,继而可得∠CFD=∠CFB,由菱形ABCD中,∠BAD=76°,可求得∠BAC的度数,又由AB的垂直平分线EF交AC于点F,求得∠ABF=∠BAC=38°,继而求得答案.
解答 解:连接BF,
∵菱形ABCD中,∠BAD=76°,
∴∠BAC=∠DAC=$\frac{1}{2}$∠BAD=38°,AB=AD,
在△ABF和△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{∠BAF=∠DAF}\\{AF=AF}\end{array}\right.$,
∴△ABF≌△ADF(SAS),
∴∠AFD=∠AFB,
∴∠CFD=∠CFB,
∵AB的垂直平分线EF交AC于点F,
∴AF=BF,
∴∠ABF=∠BAC=38°,
∴∠CFB=∠BAC+∠ABF=76°,
∴∠CFD=76°.
故选B.
点评 此题考查了菱形的性质以及线段垂直平分线的性质.注意准确作出辅助线是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3.6 元 | B. | 5 元 | C. | 10 元 | D. | 12 元 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 12 | B. | 10 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com