精英家教网 > 初中数学 > 题目详情
4.如图,△ABC中,∠C=90°,边AB的垂直平分线交AB,AC边分别为点D,点E,连接BE,若AB=10,BC=6,则△ACE的周长是14.

分析 根据勾股定理得到AC=8,根据线段的垂直平分线的性质得到AE=BE,即可得到结论.

解答 解:∵∠C=90°,AB=10,BC=6,
∴AC=8,
∵DE是AB的垂直平分线,
∴AE=BE,
∴BE+CE=BC=8,
∴△ACE的周长=AE+CE+AC=BC+AC=14.
故答案为:14.

点评 该题主要考查了线段垂直平分线的性质及其应用问题;勾股定理,应牢固掌握等腰三角形、线段垂直平分线等几何知识点的内容,并能灵活运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.设$\sqrt{2}$=m,$\sqrt{3}$=n,则$\sqrt{150}$=5mn(结果用m,n表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.探究问题:(1)方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证:DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠FAE.
又AG=AE,AF=AF
∴△GAF≌△EAF.
∴GF=EF,故DE+BF=EF.
(2)方法迁移:
如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=$\frac{1}{2}$∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
(3)问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=$\frac{1}{2}$∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有23人,在乙处参加社会实践的有17人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,问应派往甲、乙两处各多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.估计48的立方根的大小在(  )
A.2与3之间B.3与4之间C.4与5之间D.5与6之间

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.一组数据为:1,2,5,10,17,26,…,观察其规律,推断第7个数据为37,第n个数据应为(n-1)2+1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.单项式-a的系数是-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知,如图,等腰直角△ABC与等腰直角△CEF,∠ABC=∠CEF=90°,连结AF,M时AF的中点,连结MB,且点C,B,E在同一直线上.求证:BM∥CF.

查看答案和解析>>

同步练习册答案