精英家教网 > 初中数学 > 题目详情

【题目】如图1,在等腰直角△ABC中,∠BAC=90°,AB=AC=2,点EBC边上一点,∠DEF=45°且角的两边分别与边AB,射线CA交于点P,Q.

(1)如图2,若点EBC中点,将∠DEF绕着点E逆时针旋转,DE与边AB交于点P,EFCA的延长线交于点Q.设BPx,CQy,试求yx的函数关系式,并写出自变量x的取值范围;

(2)如图3,点E在边BC上沿BC的方向运动(不与B,C重合),且DE始终经过点A,EF与边AC交于Q点.探究:在∠DEF运动过程中,△AEQ能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由.

【答案】(1)y=,自变量x的取值范围是0<x<1;(2)在∠DEF运动过程中,△AEQ能成等腰三角形,此时BE的长为

【解析】

试题(1)先根据等腰三角形的性质及勾股定理得到∠B=∠C,再由可证得△BPE∽△CEQ,根据相似三角形的性质可得,设BPxCQy,即得,从而可以求得结果;

2)由∠AEF=∠B=∠C∠AQE∠C可得AE≠AQ ,当AE=EQ时,可证△ABE≌ECQ,即可得到CE=AB=2,从而可以求得BE的长;当AQ=EQ时,可知∠QAE=∠QEA=45°,则可得AE⊥BC ,即得点EBC的中点,从而可以求得BE的长..

1∵∠BAC=90°AB=AC=2

∴∠B=∠C

∴∠DEB=∠EQC

∴△BPE∽△CEQ

BPxCQy

,自变量x的取值范围是0x1

2∵∠AEF=∠B=∠C∠AQE∠C

∴∠AQE∠AEF

∴AE≠AQ

AE=EQ时,可证△ABE≌ECQ

∴CE=AB=2

∴BE=BC-EC=

AQ=EQ时,可知∠QAE=∠QEA=45°

∴AE⊥BC

EBC的中点.

∴BE=

综上,在∠DEF运动过程中,△AEQ能成等腰三角形,此时BE的长为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面高为8米的点处要安装两盏警示灯,则这两盏灯的水平距离____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°AD平分∠CAB,交CB于点DDEAB,垂足为E,若AC=3AB=5,则DE的长为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴、轴分别交于点和点,点分别为线段的中点,点上一动点,当最小时,点的坐标为_________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴、轴分别交于点,直线轴、轴分别交于点的解析式为的解析式为,两直线的交点

1)求直线的解析式;

2)求四边形的面积;

3)当时,直接写出的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中秋节吃月饼是中华民族的传统习俗.节日期间,小丽家买了三种不同馅的月饼,分别是:五仁月饼(记为A),豆沙月饼(记为B),草莓月饼(记为C),这些月饼除了馅不同,其余均相同.妈妈剪开包装袋,给一个白盘中放入了两个五仁月饼,一个豆沙月饼和一个草莓月饼;给一个花盘中放入了两个草莓月饼,一个五仁月饼和一个豆沙月饼.若小丽先从白盘里的四个月饼中随机取一个月饼,再从花盘里的四个月饼中随机取一个月饼,请用列表法或画树状图的方法,求小丽取到的两个月饼中一个是五仁月饼、一个是豆沙月饼的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高.得到下面四个结论:①OA=OD;ADEF;③当∠A=90°时,四边形AEDF是正方形;④ AE2+DF2=AF2+DE2.上述结论中正确的是( )

A. ②③ B. ②④ C. ①②③ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,DBC边中点,PAC边中点,EBC上一点且BECE,连接AE,取AE中点Q并连接QD,取QD中点G,延长PGBC边交于点H.若BC9,则HE_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图1,△ABC为等腰直角三角形,∠ACB=90°EAC边上的一个动点(点EAC不重合),以CE为边在△ABC外作等腰直角△ECD,∠ECD=90°,连接BEAD.猜想线段BEAD之间的关系.

1)独立思考:请直接写出线段BEAD之间的数量关系:

2)合作交流:城南中学八年级某学习小组受上述问题的启发,将图(1)中的等腰直角△ECD绕着点C顺时针方向旋转至如图(2)的位置,BEAC于点H,交AD于点O.(1)中的结论是否仍然成立,请说明理由.

3)拓展延伸:图(1)中ADBE存在着怎样的位置关系?在等腰直角△ECD绕着点C顺时针方向旋转的过程中ADBE的这种位置关系是否会变化?请结合图(2)说明理由.

查看答案和解析>>

同步练习册答案