精英家教网 > 初中数学 > 题目详情
1.如图,在?ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,?ABCD的周长是14,则DM等于(  )
A.1B.2C.3D.4

分析 根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据?ABCD的周长是14,求出CD=5,得到DM的长.

解答 解:∵BM是∠ABC的平分线,
∴∠ABM=∠CBM,
∵AB∥CD,
∴∠ABM=∠BMC,
∴∠BMC=∠CBM,
∴BC=MC=2,
∵?ABCD的周长是14,
∴BC+CD=7,
∴CD=5,
则DM=CD-MC=3,
故选:C.

点评 本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD是解题的关键,注意等腰三角形的性质的正确运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,已知直线y=ax+b与双曲线y=$\frac{k}{x}$(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.
(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.
(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.
(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在“绿满鄂南”行动中,某社区计划对面积为1800m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积.
(2)设甲工程队施工x天,乙工程队施工y天,刚好完成绿化任务,求y与x的函数解析式.
(3)若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过26天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知2a2+3a-6=0.求代数式3a(2a+1)-(2a+1)(2a-1)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解不等式组:$\left\{\begin{array}{l}{x-1≥0}\\{x-1<\frac{3x}{4}}\end{array}\right.$,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.计算:2$\sqrt{\frac{1}{3}}$×$\sqrt{9}$-$\sqrt{12}$+$\root{3}{\frac{7}{8}-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,P为正方形ABCD的对角线BD上任一点,过点P作PE⊥BC于点E,PF⊥CD于点F,连接EF.给出以下4个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP.其中,所有正确的结论是(  )
A.①②B.①③C.①②④D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.若关于x的一元一次不等式组$\left\{\begin{array}{l}{x-a>0}\\{2x-2<1-x}\end{array}\right.$有解,则a的取值范围是(  )
A.a>1B.a≥1C.a<1D.a≤1

查看答案和解析>>

同步练习册答案