【题目】如图,在平面直角坐标系中,⊙P的圆心是(3,a)(a>3),⊙P与y轴相切,函数y=x的图象被⊙P截得的弦AB的长为2,则a的值是_____.
【答案】2+3.
【解析】
作PH⊥y轴于H,PC⊥AB于C,作PE⊥x轴于E交AB于D,如图,先根据切线的性质得PH=2,即⊙P的半径为2,再根据垂径定理,由PC⊥AB得到,接着在Rt△BPC中利用勾股定理可计算出PC=1,由直线y=x为第一、三象限的角平分线得到∠DOE=45°,则∠ODE=45°,DE=OE=2,然后判断△PCD为等腰直角三角形得到所以即
解:作PH⊥y轴于H,PC⊥AB于C,作PE⊥x轴于E交AB于D,如图,
∵⊙P与y轴相切,
∴PH=2,即⊙P的半径为2,
∵PC⊥AB,
∴
在Rt△BPC中,
∵直线y=x为第一、三象限的角平分线,
∴∠DOE=45°,
∴∠ODE=45°,DE=OE=3,
∴∠PDC=45°,
∴
∴
故答案为:
科目:初中数学 来源: 题型:
【题目】某中学初三年级积极推进走班制教学。为了了解一段时间以来,“至善班”的学习效果,年级组织了多次定时测试,现随机选取甲、乙两个“至善班”,从中各抽取名同学在某一次定时测试中的数学成绩,其结果记录如下:
收集数据:
“至善班”甲班的名同学的数学成绩统计(满分为分) (单位:分)
“至善班”甲=乙班的名同学的数学成绩统计(满分为分) (单位:分)
整理数据:(成绩得分用表示)
分析数据,并回答下列问题:
完成下表:
在“至善班”甲班的扇形图中,成绩在的扇形中,说对的圆心角的度数为 .估计全部“至善班”的人中优秀人数为 人.(分及以上为优秀).
根据以上数据,你认为“至善班” 班(填“甲”或“乙”)所选取做样本的同学的学习效果更好一些,你所做判断的理由是:
① .
② .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,A(0,5),直线x=-5与x轴交于点D,直线y=-x-与x轴及直线x=-5分别交于点C,E.点B,E关于x轴对称,连接AB.
(1)求点C,E的坐标及直线AB的解析式;
(2)若S=S△CDE+S四边形ABDO,求S的值;
(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积,如此不更快捷吗?”但大家经反复验算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将矩形ABCD绕点B顺时针旋转得到矩形A1BC1D1,点A、C、D的对应点分别为A1、C1、D1
(1)当点A1落在AC上时
①如图1,若∠CAB=60°,求证:四边形ABD1C为平行四边形;
②如图2,AD1交CB于点O.若∠CAB≠60°,求证:DO=AO;
(2)如图3,当A1D1过点C时.若BC=5,CD=3,直接写出A1A的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知:正方形OCAB,A(2,2),Q(5,7),AB⊥y轴,AC⊥x轴,OA,BC交于点P,若正方形OCAB以O为位似中心在第一象限内放大,点P随正方形一起运动,当PQ达到最小值时停止运动.以PQ的长为边长,向PQ的右侧作等边△PQD,求在这个位似变化过程中,D点运动的路径长( )
A. 5B. 6C. 2D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.
(1)求线段AB的表达式,并写出自变量x的取值范围;
(2)求乙的步行速度;
(3)求乙比甲早几分钟到达终点?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,则点D到BC的距离是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面内,我们把既有大小又有方向的量叫做平面向量。平面向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向。其中大小相等,方向相同的向量叫做相等向量。如以正方形的四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同的向量:、、、、、、、(由于和是相等向量,因此只算一个)
⑴作两个相邻的正方形(如图一)。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为,试求的值;
⑵作个相邻的正方形(如图二)“一字型”排开。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为,试求的值;
⑶作个相邻的正方形(如图三)排开。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为,试求的值;
⑷作个相邻的正方形(如图四)排开。以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为,试求的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠BAC=90°,AB=AC=6.D为BC边一点,且BD∶DC=1∶2,以D为一个顶点作正方形DEFG,且DE=BC,连接AE,将正方形DEFG绕点D旋转一周,在整个旋转过程中,当AE取得最大值时AG的长为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com