19£®ÁâÐÎABCDµÄ¶Ô½ÇÏßAC£¬BDÏཻÓÚµãO£¬AB=2£¬¡ÏABC=120¡ã£¬¶¯µãPÔÚÏ߶ÎBDÉÏ´ÓµãBÏòµãDÔ˶¯£¬PE¡ÍABÓÚµãE£¬ËıßÐÎPEBF¹ØÓÚBD¶Ô³Æ£¬ËıßÐÎQGDHÓëËıßÐÎPEBF¹ØÓÚAC¶Ô³Æ£®ÉèÁâÐÎABCD±»ÕâÁ½¸öËıßÐθÇס²¿·ÖµÄÃæ»ýΪS1£¬BP=x£º
£¨1£©¶Ô½ÇÏßACµÄ³¤Îª2$\sqrt{3}$£»SÁâÐÎABCD=2$\sqrt{3}$£»
£¨2£©Óú¬xµÄ´úÊýʽ±íʾS1£»
£¨3£©ÉèµãPÔÚÒƶ¯¹ý³ÌÖÐÂú×ãS1=$\frac{1}{2}$SÁâÐÎABCDʱ£¬ÇóxµÄÖµ£®

·ÖÎö £¨1£©¸ù¾ÝÈñ½ÇÈý½Çº¯Êý¿ÉÒÔ·Ö±ðÇóµÃAO¡¢BOµÄ³¤£¬´Ó¶ø¿ÉÒÔÇóµÃ¶Ô½ÇÏßACºÍBDµÄ³¤£¬¸ù¾ÝÁâÐεÄÃæ»ýµÈÓÚ¶Ô½ÇÏ߳˻ýµÄÒ»°ë£¬´Ó¶ø¿ÉÒÔÇóµÃÁâÐεÄÃæ»ý£»
£¨2£©ÒªÓú¬xµÄ´úÊýʽ±íʾS1£¬·ÖÁ½ÖÖÇé¿ö£¬·Ö±ðд³öÁ½ÖÖÇé¿öÏÂËüÃǵĹØϵʽ¼´¿É£»
£¨3£©¸ù¾Ý£¨2£©ÖеĹØϵ¿ÉÒÔÇóµÃÂú×ãÌõ¼þµÄxµÄÖµ£¬±¾ÌâµÃÒÔ½â¾ö£®

½â´ð ½â£º£¨1£©¡ßÁâÐÎABCDµÄ¶Ô½ÇÏßAC£¬BDÏཻÓÚµãO£¬AB=2£¬¡ÏABC=120¡ã£¬
¡à¡ÏAOB=90¡ã£¬¡ÏABO=60¡ã£¬
¡àAO=AB•sin60¡ã=$\sqrt{3}$£¬BO=AB•cos60¡ã=1£¬
¡àAC=2AO=2$\sqrt{3}$£¬BD=2BO=2£¬
¡à${S}_{ÁâÐÎABCD}=\frac{2\sqrt{3}•2}{2}=2\sqrt{3}$£¬
¹Ê´ð°¸Îª£º2$\sqrt{3}$£»2$\sqrt{3}$£»
£¨2£©ÓÉÌâÒâ¿ÉµÃ
¡ÏABO=60¡ã£¬BP=x£¬¡ÏPEB=90¡ã£¬
¡àBE=BP•cos60¡ã=$\frac{x}{2}$£¬PE=BP•sin60¡ã=$\frac{\sqrt{3}x}{2}$£¬
¡àµ±0£¼x¡Ü1ʱ£¬${S}_{1}=\frac{\frac{1}{2}x•\frac{\sqrt{3}x}{2}}{2}¡Á4$=$\frac{\sqrt{3}{x}^{2}}{2}$£¬
µ±1£¼x¡Ü2ʱ£¬${S}_{1}=\frac{\frac{1}{2}x•\frac{\sqrt{3}x}{2}}{2}¡Á4$-$\frac{2£¨x-1£©•2¡Á\frac{\sqrt{3}}{3}£¨x-1£©}{2}$=$-\frac{\sqrt{3}}{6}{x}^{2}+\frac{4\sqrt{3}x}{3}-\frac{2\sqrt{3}}{3}$£¬
ÓÉÉϿɵã¬S1=$\left\{\begin{array}{l}{\frac{\sqrt{3}{x}^{2}}{2}}&{0£¼x¡Ü1}\\{-\frac{\sqrt{3}{x}^{2}}{6}+\frac{4\sqrt{3}x}{3}-\frac{2\sqrt{3}}{3}}&{1£¼x¡Ü2}\end{array}\right.$£»
£¨3£©¡ßÁâÐεÄÃæ»ýÊÇ$2\sqrt{3}$£¬
¡àÁî$\frac{\sqrt{3}}{2}{x}^{2}=\sqrt{3}$£¬µÃx=$\sqrt{2}$£¾1£¨ÉáÈ¥£©»òx=-$\sqrt{2}$£¨ÉáÈ¥£©£¬
Áî$-\frac{\sqrt{3}}{6}{x}^{2}+\frac{4\sqrt{3}}{3}x-\frac{2\sqrt{3}}{3}=\sqrt{3}$£¬µÃx=4$+\sqrt{6}£¾2$£¨ÉáÈ¥£©£¬»òx=4-$\sqrt{6}$£¬
¼´µãPÔÚÒƶ¯¹ý³ÌÖÐÂú×ãS1=$\frac{1}{2}$SÁâÐÎABCDʱ£¬xµÄÖµÊÇ4-$\sqrt{6}$£®

µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌ⣬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öËùÇóÎÊÌâÐèÒªµÄÌõ¼þ£¬ÀûÓÃÈñ½ÇÈý½Çº¯ÊýºÍÊýÐνáºÏµÄ˼Ïë½â´ðÎÊÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖª¹ØÓÚxµÄÒ»ÔªÒ»´Î·½³Ìx2+2x+2k-4=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬ÈôkÊÇÕýÕûÊý£¬ÔòkµÄÖµÊÇ£¨¡¡¡¡£©
A£®3ºÍ1B£®2ºÍ3C£®1ºÍ2D£®0ºÍ1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªËıßÐÎABCDÖÐÓÐËĸöÌõ¼þ£ºAB¡ÎCD£¬AB=CD£¬BC¡ÎAD£¬BC=AD£¬´ÓÖÐÈÎÑ¡Á½¸ö£¬²»ÄÜʹËıßÐÎABCD³ÉΪƽÐÐËıßÐεÄÑ¡·¨ÊÇ£¨¡¡¡¡£©
A£®AB¡ÎCD£¬AB=CDB£®AB¡ÎCD£¬BC¡ÎADC£®AB¡ÎCD£¬BC=ADD£®AB=CD£¬BC=AD

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬Õý·½ÐÎABCDÖУ¬C£¨-3£¬0£©£¬D£¨0£¬4£©£¬¹ýAµã×÷AF¡ÍyÖáÓÚFµã£¬¹ýBµã×÷xÖáµÄ´¹Ïß½»¹ýAµãµÄ·´±ÈÀýº¯ÊýµÄͼÏóÓÚEµã£¬½»xÖáÓÚGµã£®
£¨1£©ÇóÖ¤£º¡÷CDO¡Õ¡÷DAF£»
£¨2£©ÇóµãEµÄ×ø±ê£»
£¨3£©Èçͼ2£¬¹ýµãC×÷Ö±Ïßl¡ÎAE£¬ÔÚÖ±ÏßlÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹¡÷PACÊǵÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇóPµã×ø±ê£¬²»´æÔÚ˵Ã÷ÀíÓÉ£®[Ìáʾ£ºÈô×ø±êƽÃæÉÏÁ½µãA£¬BµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬ÔòÁ½µãÖ®¼äµÄ¾àÀëÊÇAB=$\sqrt{£¨{x}_{2}-{x}_{1}£©^{2}+£¨{y}_{2}-{y}_{1}£©^{2}}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®½â·½³Ì£º
£¨1£©2x2-5x=0£»
£¨2£©3x2-5x-2=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªx+y=-3£¬xy=2£¬Ôò$\sqrt{\frac{x}{y}}$+$\sqrt{\frac{y}{x}}$=$-\frac{3\sqrt{2}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÈôÁâÐεÄÁ½Ìõ¶Ô½ÇÏß³¤ÊÇ·½³Ìx2-7x+12=0µÄÁ½¸ö¸ù£¬Ôò¸ÃÁâÐεÄÖܳ¤µÈÓÚ10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èçͼ£¬ÔÚ¾ØÐÎABCDÖУ¬AB=4£¬BC=3£¬µãPÔÚCD±ßÉÏÔ˶¯£¬Áª½áAP£¬¹ýµãB×÷BE¡ÍAP£¬´¹×ãΪE£¬ÉèAP=x£¬BE=y£¬ÔòÄÜ·´Ó³yÓëxÖ®¼äº¯Êý¹ØϵµÄͼÏó´óÖÂÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¨a-1£©x2-2x+1=0ÓÐÁ½¸öʵÊý¸ù£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®a£¼2B£®a¡Ü2C£®a£¼2ÇÒa¡Ù1D£®a¡Ü2ÇÒa¡Ù1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸