精英家教网 > 初中数学 > 题目详情

平面直角坐标系中,已知点O(0,0)、A(0,2)、B(1,0),点P是反比例函数图 象上的一个动点,过点P作PQ⊥x轴,垂足为点Q.若以点O、P、Q为顶点的三角形与△OAB相似, 则相应的点P共有  (     )

  A.1个    B.2个   C.3个    D.4个

 

D

解析:∵点P是反比例函数y=﹣图象上,

∴设点P(x,y),

当△PQO∽△AOB时,则

又PQ=y,OQ=﹣x,OA=2,OB=1,

,即y=﹣2x,

∵xy=﹣1,即﹣2x2=﹣1,

∴x=±

∴点P为(,﹣)或(﹣);

同理,当△PQO∽△BOA时,

求得P(﹣)或(,﹣);

故相应的点P共有4个.

故选D.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为精英家教网一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.
(1)求点B的坐标;
(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;
(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、平面直角坐标系中,已知B(-2,0)关于y轴的对称点为B′,从A(2,4)点发出一束光线,经过y轴反射后穿过B′点.此光线在y轴上的入射点的坐标是
(0,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,请用含m的代数式表示点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,在平面直角坐标系中,已知平行四边形的三个顶点坐标分别是O(0,0),A(-3,0),B(0,2),求平行四边形第四个顶点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,已知A(0,2),B(1,0)将△AOB绕点B顺时针方向旋转90°得到△DEB.以A为顶点的抛物线经过点E.
(1)求抛物线的解析式;
(2)在Y轴右侧抛物线上是否存在点P,使得以点P、O、E、D为顶点的四边形是梯形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)设△DEB的外心为M,将抛物线沿X轴正方向以每秒1个单位的速度向右平移,直接写精英家教网出M在抛物线内部(指抛物线与X轴所围成的部分)时t的取值范围.

查看答案和解析>>

同步练习册答案