【题目】如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,过A点作AG∥DB,交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90,求证:四边形DEBF是菱形.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)根据已知条件证明BE=DF,BE∥DF,从而得出四边形DFBE是平行四边形,即可证明DE∥BF,
(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.
试题解析:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD.
∵点E、F分别是AB、CD的中点,
∴BE=AB,DF=CD.
∴BE=DF,BE∥DF,
∴四边形DFBE是平行四边形,
∴DE∥BF;
(2)∵∠G=90°,AG∥BD,AD∥BG,
∴四边形AGBD是矩形,
∴∠ADB=90°,
在Rt△ADB中
∵E为AB的中点,
∴AE=BE=DE,
∵四边形DFBE是平行四边形,
∴四边形DEBF是菱形.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,点E为AB上一动点(不与A、B重合).将△EBC沿CE翻折至△EFC,延长EF交边AD于点G.
(1)连结AF,若 AF∥CE.证明:点E为AB的中点;
(2)证明:GF=GD;
(3)若AD=10,设EB=x,GD=y,求y与x的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(阅读理解)若数轴上两点A、B所表示的数分别为a和b,则有
①A、B两点的中点表示的数为;
②当b>a时,A、B两点间的距离为AB=b﹣a.
(解决问题)数轴上两点A、B所表示的数分别为a和b,且满足|a+2|+(b﹣8)2020=0
(1)求出A、B两点的中点C表示的数;
(2)点D从原点O点出发向右运动,经过2秒后点D到A点的距离是点D到C点距离的2倍,求点D的运动速度是每秒多少个单位长度?
(数学思考)(3)点E以每秒1个单位的速度从原点O出发向右运动,同时,点M从点A出发以每秒7个单位的速度向左运动,点N从点B出发,以每秒10个单位的速度向右运动,P、Q分别为ME、ON的中点.思考:在运动过程中,的值是否发生变化?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知两点在数轴上所表示的数分别为且满足.
(1)则 , ;
(2)若点从点出发,以每秒1个单位长度的速度向右运动,同时点Q从M点出发,以每秒1个单位长度的速度向左运动,经过多长时间后两点相距7个单位长度?
(3)若为线段上的两点,且,点从点出发,以每秒2个单位长度的速度向左运动,点从点出发,以每秒4个单位长度的速度向右运动,点R从B点出发,以每秒3个单位长度的速度向右运动,P,Q,R同时出发,是否存在常数,使得的值与它们的运动时间无关,为定值。若存在,请求出和这个定值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点.点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足是F,连接OF,则OF的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的直径AB=12cm,C为AB延长线上一点,CP与⊙O相切于点P,过点B作弦BD∥CP,连接PD.
(1)求证:点P为的中点;
(2)若∠C=∠D,求四边形BCPD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小明骑自行车从家里出发到野外郊游,从家出发0.5小时后到达甲地,游玩一段时间后,按原速前往乙地,小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,已知妈妈驾车速度是小明的3倍.
下列说法正确的有( )个
①小明骑车的速度是20km/h,在甲地游玩1小时
②小明从家出发小时后被妈妈追上
③妈妈追上小明时离家25千米
④若妈妈比小明早10分钟到达乙地,则从家到乙地30km.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com