精英家教网 > 初中数学 > 题目详情
精英家教网在△ABC中,已知BC=a,CA=b,AB=c,s=
a+b+c
2
,内切圆I和BC,CA,AB分别相切于点D,E,F.求证:
(1)AF=s-a;
(2)S△ABC=s(s-a)tan
A
2
分析:(1)由切线长定理知:AE=AF、BF=BD、CD=CE,则AF=
1
2
(AB+AC-BC),再将s的式子代入上式即可证得本题所求的结论;
(2)可连接IA、IB、IC,IF、IE、ID;在Rt△AFI中,易求得⊙I的半径为AF•tan
A
2
,即(s-a)•tan
A
2
;将△ABC分为△AIB、△AIC、△BIC三部分,分别用三角形ABC的三边长即⊙I的半径表示出它们的面积,进而由S△ABC=S△ABI+S△BCI+S△CAI得出所要证的结论.
解答:精英家教网证明:(1)设AE=AF=x,BF=BD=y,CD=CE=z,
得方程组
x+y=c
y+z=a
z+x=b
;(2分)
解得x=s-a,
所以AF=s-a;(4分)

(2)设内切圆I的半径为r,连IA,IB,IC,ID,IE,IF,
则∠AFI=90°,∠IAF=
A
2
;(6分)
r=AF•tan
A
2
=(s-a)tan
A
2
(8分)
∵S△ABC=S△ABI+S△BCI+S△CAI
=
1
2
rc+
1
2
ra+
1
2
rb
=
1
2
r(a+b+c)
=sr;(9分)
∴S△ABC=s(s-a)tan
A
2
.(10分)
点评:此题主要考查了三角形内切圆的性质及切线长定理、三角形面积的求法等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、(1)在△ABC中,已知∠B=∠C+20°,∠A+∠B=140°,求△ABC的各个内角的度数是多少?
(2)如图,将△ABC纸片沿MN折叠所得的粗实线围成的图形的面积与原△ABC的面积之比为3:4,且图中3个阴影三角形的面积之和为12cm2,则重叠部分的面积为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•雅安)在△ABC中,已知∠A、∠B都是锐角,且sinA=
3
2
,tanB=1,则∠C的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知∠A=80°,则∠B、∠C的角平分线相交所成的钝角为
130°
130°

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.在下列结论中:①∠C=72°;②BD是∠ABC的平分线;③∠BDC=100°;④△ABD是等腰三角形;⑤AD=BD=BC.上述结论中,正确的有
①②④⑤
①②④⑤
.(填写序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知∠A=∠C-∠B,且∠A=70°,则∠B的度数=
20°
20°

查看答案和解析>>

同步练习册答案