精英家教网 > 初中数学 > 题目详情
1.如图所示,点E在直线DF上,点B在直线AC上,直线AF分别交BD,CE于点G,H.若∠AGB=∠EHF,∠C=∠D,请到断∠A与∠F的数量关系,并说明理由.

分析 首选得出∠DGF=∠DGF,即可得出BD∥CE,进而得出∠ABD=∠D,即可得出AC∥DF求出答案即可.

解答 解:∠A=∠F
理由:∵∠AGB=∠DGF(对顶角相等),
∠AGB=∠EHF,
∴∠DGF=∠DGF,
∴BD∥CE,
∴∠C=∠ABD,
∵∠D=∠C,
∴∠ABD=∠D,
∴AC∥DF,
∴∠A=∠F.

点评 此题主要考查了平行线的判定与性质,正确得出BD∥CE是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,∠ACB=90°,以直角边BC为直径的⊙O交AB于点D,连接CD,∠CAB的角平分线交CD于点E,交BC于点F,交⊙O于点P.
(1)求证:$\frac{AE}{AF}$=$\frac{CF}{BF}$;
(2)若tan∠CAB=$\frac{4}{3}$,求sin∠CAP的值;
(3)连接PC、PB,若∠ABC=30°,AB=2$\sqrt{3}$,求△PCF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,若∠B=28°,∠C=22°,∠A=60°,求∠BDC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在?ABCD中,E为DC边上的一点,AE交BD于点O,若OD=3,BD=9,求证:DE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图:已知AD⊥BC于点D,∠1+∠2=180°,∠B=∠CDG,试判断EF与BC的位置关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,⊙O的直径AB=2,点C在⊙O上,弦AC=1,则∠D的度数是(  )
A.30°B.60°C.45°D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1,△2,△3(图中阴影部分)的面积分别是4,9和16,则△ABC的面积是(  )
A.49B.64C.100D.81

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.若x1,x2,x3,…x10的平均数是5,x11,x12,x13,…x20的平均数是3,则x1,x2,x3,…x20的平均数是4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在x轴上方,平行于x轴的直线与反比例函数y=$\frac{{k}_{1}}{x}$和y=$\frac{{k}_{2}}{x}$的图象分别交于A、B两点,连接OA、OB,若△AOB的面积为6,则k1-k2=-12.

查看答案和解析>>

同步练习册答案