精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP=3数学公式,PE⊥PB交CD于点E,则PE=________.


分析:作辅助线,连接BE,根据AB,AP的长和∠BAP的度数,可将BP2表示出来,同理可将PE2,BE2表示出来,在Rt△BPE中,根据勾股定理BP2+PE2=BE2,可将CE的长求出,进而可将PE的长求出.
解答:解:连接BE,设CE的长为x
∵AC为正方形ABCD的对角线,正方形边长为4,CP=3
∴∠BAP=∠PCE=45°,AP=4-3=
∴BP2=AB2+AP2-2AB×AP×cos∠BAP=42+(2-2×4××=10
PE2=CE2+CP2-2CE×CP×cos∠PCE=(32+x2-2x×3×=x2-6x+18
BE2=BC2+CE2=16+x2
在Rt△PBE中,BP2+PE2=BE2,即:10+x2-6x+18=16+x2,解得:x=2
∴PE2=22-6×2+18=10
∴PE=
故答案为
点评:本题主要是利用勾股定理进行求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案