【题目】如图,矩形的顶点分别在轴的正半轴上,点在反比例函数的第一象限内的图像上,,动点在轴的上方,且满足.
(1)若点在这个反比例函数的图像上,求点的坐标;
(2)连接,求的最小值;
(3)若点是平面内一点,使得以为顶点的四边形是菱形,则请你直接写出满足条件的所有点的坐标.
【答案】(1)点P的坐标为(6,2);(2);(3)Q (4,5),Q (4+,5),Q (42,1),Q (4+2,1).
【解析】
(1)首先根据点B坐标,确定反比例函数的解析式,设点P的纵坐标为m(m>0),根据,构建方程即可解决问题;
(2)过点(0,2),作直线l⊥y轴,由(1)知,点P的纵坐标为2,推出点P在直线l上作点O关于直线l的对称点O',则OO'=4,连接AO'交直线l于点P,此时PO+PA的值最小;
(3)分两种情形分别求解即可解决问题;
(1)∵四边形OABC是矩形,OA=4,OC=3,
∴点B的坐标为(4,3),
∵点B在反比例函数的第一象限内的图象上
∴k=12,
∴y=,
设点P的纵坐标为m(m>0),
∵.
∴OAm=OAOC,
∴m=2,
当点,P在这个反比例函数图象上时,则2= ,
∴x=6
∴点P的坐标为(6,2).
(2)过点(0,2),作直线l⊥y轴.
由(1)知,点P的纵坐标为2,
∴点P在直线l上
作点O关于直线l的对称点O',则OO'=4,
连接AO'交直线l于点P,此时PO+PA的值最小,
则PO+PA的最小值=PO'+PA=O'A=.
(3)
①如图2中,当四边形ABQP是菱形时,易知AB=AP=PQ=BQ=3,P (4,2),P (4,2),
∴Q (4,5),Q (4+,5).
②如图3中,当四边形ABPQ是菱形时,P (42,2),P(4+2,2),
∴Q (42,1),Q (4+2,1).
综上所述,点Q的坐标为Q (4,5),Q (4+,5),Q (42,1),Q (4+2,1).
科目:初中数学 来源: 题型:
【题目】我国明代数学家程大位在他六十岁时终于完成了《外法统宗》的编撰.这是- -木简明实用的数学书,书中列出了许多应用题的数字计算
请从两题中任选-题做答.
:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差半斤,设所分银子共两.根据题意列出的方程是____________ .( 注:明代时两.故有“半斤八两”这个成语)
:用九百九十九文钱共买了一千个甜果和苦果.其中四文钱可以买甜果七个,十一文钱可以买苦果九个,设买了个甜果,根据题意列出的方程是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年4月8日—11日,博鳌亚洲论坛2018年年会在海南省博鳌镇召开.本届博鳌亚洲论坛的主题为“开放创新的亚洲,繁荣发展的世界”.围绕这一主题,年会设置了“全球化与一带一路”“开放的亚洲”“创新”“改革再出发”四大板块,展开60多场正式讨论.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区,已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.
(1)甲种商品与乙种商品的销售单价各多少元?
(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 , 中, ,线段在射线上,且,线段沿射线运动,开始时,点与点重合,点到达点时运动停止,过点作,与射线相交于点,过点作的垂线,与射线相交于点.设,四边形与重叠部分的面积为关于的函数图象如图所示(其中时,函数的解析式不同)
(1)填空: 的长是 ;
(2)求关于
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市某校推进新课改的过程中,开设的体育选修课有::篮球,:足球,:排球,:羽毛球,:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).
(1)该班学生人数是________,并补全频数分布直方图;
(2)表示“羽毛球”所在扇形的圆心角是________;
(3)若该校共有学生3500名,请估计有多少人选修足球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.
(1)已知T(1,﹣1)=﹣2,T(4,2)=1.
①求a,b的值;
②若关于m的不等式组 恰好有3个整数解,求实数p的取值范围;
(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,折叠矩形ABCD,使点B落在对角线AC上的点F处,若BC=8,AB=6,则线段CE的长度是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD.求∠BDC的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com