【题目】 如图,在 12×12 的正方形网格中,△TAB 的顶点分别为 T(1,1),A(2,3),B(4,2).
(1)以点 T(1,1)为位似中心,按比例尺(TA′:TA)3:1 的位似中心的同侧将 TAB 放大为△TA′B′,放大后点 A,B 的对应点分别为 A′,B′,画出△TA′B′,并写出点 A′,B′的坐标;
(2)在(1)中,若 C(a,b)为线段 AB 上任一点,写出变化后点 C 的对应点 C′的坐标。
科目:初中数学 来源: 题型:
【题目】将长方形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图1);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图2);再展平纸片(如图3),则图3中∠α的大小为()
A.30°B.25.5°C.20°D.22.5°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的边BC与x轴重合,B、C对应的横坐标是一元二次方程的两根,E是AD与y轴的交点,其纵坐标为2,过A、C作直线交y轴于F.
(1)求直线AF的解析式.
(2)M是BC上一点,其横坐标为2,在坐标轴上,你能否找到一点P,使?若能,求出点P的坐标;若不能,请说明理由.
(3)点Q是x轴上一动点,连接AQ,Q在运动过程中AQ+是否存在最小值?若存在,请求出AQ+最小值及Q的坐标;若不存在,请说明理由.
备用图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.
(1)求证:AE平分∠DAC;
(2)若AB=4,∠ABE=60°,求出图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O 是直角△ABC 的外接圆,∠ABC=90 ,AB=12,BC=5, 弦 BD=BA,BE 垂直 DC 的延长线于点 E,
(1)求证:∠BCA=∠BAD.
(2)求证:△ABC∽△DEB
(3)求 DE 的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).
(1)求该抛物线的解析式;
(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有( )
A. 4对B. 3对C. 2对D. 5对
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:三角形纸片ABC中,∠C=90°,AB=12,BC=6,B′是边AC上一点.将三角形纸片折叠,使点B与点B′重合,折痕与BC、AB分别相交于E、F.设BE=x,
(1)若x=4,求B′C的长;
(2)当△AFB′是直角三角形时,求出x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com