解决问题:如图,已知正方形ABCD,点E是边AB上一动点,点F在AB边或其延长线上,点G在边AD上.连结ED,FG,交点为H.
【小题1】如图1,若AE=BF=GD,请直接写出∠EHF= ▲ °;
【小题2】如图2,若EF =CD,GD=AE,设∠EHF=α.请判断当点E在AB上运动时, ∠EHF的大小是否发生变化?若发生变化,请说明理由;若不发生变化,请求出tanα.
【小题1】45°;
连接FC和CG(如图1),由题意可知ABCD为正方形,AE=BF=GD,
∴△AED≌△BFC≌△DGC(SAS),
∴CF=GC,∠AED=∠BFC,∠BCF=∠DCG,
∴ED∥FC,
∴∠EHF=∠GFC,
又∵∠BCD=90°=∠BCG+∠GCD=∠BCG+∠BCF=∠GCF,
∴△GCF是等腰直角三角形,
∴∠GFC=∠FGC=45°,
∴∠EHF=45°;(4分)
【小题2】答:不会变化.
证明:如图2,过点F作FM∥ED交CD于M,连接GM.
∵正方形ABCD中,AB∥CD,
∴四边形EFMD为平行四边形.
∴EF=DM,DE=FM.
∴∠3=∠4,∠EHF=∠HFM=α.
∵EF=CD,GD=AE,
∴.
∴,
∵∠A=∠GDM=90°,
∴△DGM∽△AED.
∴
∠1=∠2,
∴,
∵∠2+∠3=90°,∠1=∠2,∠3=∠4.
∴∠1+∠4=90°.
∴∠GMF=90°.
在Rt△GFM中,tanα=.(4分)
解析
科目:初中数学 来源: 题型:
2 |
5 |
2 |
5 |
查看答案和解析>>
科目:初中数学 来源: 题型:
k |
x+2 |
k |
x |
4 |
x |
4 |
x |
4 |
x-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:江苏省苏州市高新区2012届八年级下学期期末考试数学试题 题型:解答题
现场学习:我们知道,若锐角α的三角函数值为sinα = m,则可通过计算器得到角α的大小,这时我们用arc sin m来表示α,记作:α=arc sin m;若cos α = m,则记α = arc cos m;若tan α = m,则记α = arc tan m.
解决问题:如图,已知正方形ABCD,点E是边AB上一动点,点F在AB边或其延长线上,点G在边AD上.连结ED,FG,交点为H.
(1)如图1,若AE=BF=GD,请直接写出∠EHF= °;
(2)如图2,若EF =CD,GD=AE,设∠EHF=α.请判断当点E在AB上运动时, ∠EHF的大小是否发生变化?若发生变化,请说明理由;若不发生变化,请求出α.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com