精英家教网 > 初中数学 > 题目详情
如图,已知⊙O1和⊙O2相交于A、B两点,直线CD、EF过点B交⊙O1于点C、E,交⊙O2于点D、F.
(1)求证:△ACD∽△AEF;
(2)若AB⊥CD,且在△AEF中,AF、AE、EF的长分别为3、4、5,求证:AC是⊙O2的切线.

【答案】分析:(1)两角对应相等可以判定△ACD∽△AEF.
(2)由勾股定理得出∠EAF=90°,证明AC是⊙O2的切线,AC⊥AD是关键,通过△ACD∽△AEF得以证明.
解答:证明:(1)∵在⊙O1中,∠C=∠E,
∵∠D=∠F,
∴△ACD∽△AEF;

(2)∵AB⊥CD,即∠ABD=90°,
∴AD是⊙O2的直径,
∵在△AEF中,AF2+AE2=32+42=52=EF2
∴∠EAF=90°,
由(1)得△ACD∽△AEF,
∴∠CAD=∠EAF=90°,
∴AC⊥AD,
又∵AD是⊙O2的直径,
∴AC是⊙O2的切线.
点评:本题考查了相似三角形的判定和性质及切线的判定的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,已知⊙O1和⊙O2相交于A,B两点,过点A作⊙O1的切线交⊙O2于点C,直线CB交⊙O1于点D,直线DA交⊙O2于点E.试证明:AC=EC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O1和⊙O2相交于A、B两点,DP是⊙O1的切线,切点为P,直线PD交⊙O2于C、Q,交AB的延长线于D.
(1)求证:DP2=DC•DQ;
(2)若QA也是⊙O1的切线,求证:方程x2-2PBx+BC•AB=0有两个相等的实数根;
(3)若点C为PQ的中点,且DP=y,DC=x,求y与x的函数关系式,并精英家教网求S△ADC:S△ACQ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O1和⊙O2外切于点P,AB是两圆的外公切线,A,B为切点,AP的延精英家教网长线交⊙O1于C点,BP的延长线交⊙O2于D点,直线O1O2交⊙O1于M,交⊙O2于N,与BA的延长线交于点E.
求证:(1)AB2=BC•DA.
(2)线段BC,AD分别是两圆的直径.
(3)PE2=BE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•永嘉县一模)如图,已知⊙O1和⊙O2的半径分别是2cm和3cm,圆心距O1O2是10cm,把⊙O2由图示位置沿直线O1O2向左平移6cm,此时它与⊙O1的位置关系是
相交
相交

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知⊙O1和⊙O2相交于点A、B,过点A作直线分别交⊙O1、⊙O2于点C、D,过点B作直线分别交⊙O1、⊙O2于点E、F,求证:CE∥DF.

查看答案和解析>>

同步练习册答案