【题目】如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=4,则BE=_____.
【答案】1
【解析】
首先连接CD,BD,根据角平分线的性质可得DF=DE,易证△ADF≌△ADE,可得AE=AF,然后根据线段垂直平分线的性质,可得CD=BD,进而证明Rt△CDF≌Rt△BDE,则可得BE=CF,继而利用线段和差求得答案.
连接CD,BD,
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DF=DE,∠F=∠DEB=∠DEA=90°,
∵AD=AD,
∴△ADF≌△ADE,
∴AE=AF,
∵DG是BC的垂直平分线,
∴CD=BD,
在Rt△CDF和Rt△BDE中,,
∴Rt△CDF≌Rt△BDE(HL),
∴BE=CF,
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,
∵AB=6,AC=4,
∴BE=1.
故答案为:1
科目:初中数学 来源: 题型:
【题目】如图,已知点、在反比例函数上,作等腰直角三角形,点为斜边的中点,连并延长交轴于点.
求反比例函数的解析式;
的面积是多少?
若点在直线上,请求出直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一批名牌衬衫,每天可销售件,每件赢利元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经市场调查发现,如果每件衬衫每降价元,商场每天可多售出件.
如果每件衬衫降价元,商场每天赢利多少元?
如果商场每天要赢利元,且尽可能让顾客得到实惠,每件衬衫应降价多少元?
用配方法说明,每件衬衫降价多少元时,商场每天赢利最多,最多是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形ABC是边长为6的等边三角形,P是AC边上任意一点(与A、C两点不重合).Q是CB延长线上一点,且始终满足条件BQ=AP,过P作PE⊥AB于E,连接PQ交AB于D.
(1)如图(1)当∠CQP=30°时.求AP的长.
(2)如图(2),当P在任意位置时,求证:DE=AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+bx+3与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,连接AC..
(1)请求出抛物线y=ax2+bx+3的解析式;
(2)如图2,点P、点Q同时从点A出发,点P沿AC以每秒个单位长度的速度,由点A向点C运动;点Q沿AB以每秒2个单位长度的速度,由点A向点B运动;当一个点停止运动时,另一个点也随之停止运动,设点P的运动时间为t秒,连接PQ.
①求证:PQ⊥AC;
②过点Q作QE⊥x轴,交抛物线于点E,连接PE,当PQ=PE时,请求出t的值;
③在y轴上是否存在点D,使以点A、P、Q、D为顶点的四边形是平行四边形?若存在,直接写出D点坐标:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形ABCD中,AD∥BC,若∠DAB的平分线AE交CD于E,连接BE,且BE恰好平分∠ABC,则AB的长与AD+BC的大小关系是( )
A.AB>AD+BCB.AB<AD+BCC.AB=AD+BCD.无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,平面直角坐标系中,A(0,4) ,B (b,0) (-4<b<0),将线段AB绕点A逆时针旋转90°得到线段AC,连接BC.
(1)如图1,直接写出C点的坐标: ;(用b表示)
(2)如图2,取线段BC的中点D,在x轴取一点E使∠DEB=45°,作CF⊥x轴于点F.
①求证:EF=OB;
②如图3,连接AE,作DH∥y轴交AE于点H,当OE=EF时,求线段DH的长度.
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,有一张长为、宽为的长方形纸片,现要在这张纸片上画两个小长方形,使小长方形的每条边都与大长方形的一边平行,并且每个小长方形的长与宽之比也都为,然后把它们剪下,这时,所剪得的两张小长方形纸片的周长之和有最大值.求这个最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com