精英家教网 > 初中数学 > 题目详情
18.将函数y=2x+b(b为常数)的图象位于x轴上方的部分沿x轴翻折至其下方后,所得的折线是函数y=-|2x+b|(b为常数)的图象.若该图象在直线y=-4上方的点的横坐标x满足0<x<5.求b的取值范围.

分析 由题意:直线y=2x+b经过(0,-4)时,b=-4,x=5时,y=-4,则有-10-b=5,可得b=-15,由此即可解决问题.

解答 解:由题意:直线y=2x+b经过(0,-4)时,b=-4,
x=5时,y=-4,则有-10-b=5,可得b=-15,
由题意,-4≤b≤-15
故答案为-4≤b≤-15.

点评 本题考查了一次函数图象与几何变换,求出函数y=2x+b沿x轴翻折后的解析式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.定义:a是不为1的有理数,我们把$\frac{1}{1-a}$称为a的差倒数.如:2的差倒数是$\frac{1}{1-2}$=-1,-1的差倒数是$\frac{1}{1-(-1)}$=$\frac{1}{2}$.已知a1=-$\frac{1}{3}$,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推an+1是an的差倒数,请你直接写出a2016=4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:正比例函数y=kx(k≠0)过A(-2,3),求:
(1)比例系数k的值;
(2)在x轴上找一点P,使S△PAO=6,并求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知正比例函数的图象经过点(2,-$\sqrt{3}$),求这个正比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在?ABCD中,BC=2AB,点M是AD的中点,CM的延长线与BA的延长线相交于点N,CE⊥AB于E,连接EM,如果∠AEM=50°,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知AB是⊙O的直径,OP垂直于弦AC,PA是⊙O的切线,求证:△ABC∽△POA.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,正方形ABCD的四个顶点在坐标轴上,A点坐标为(3,0),假设有甲、乙两个物体分别由点A同时出发,沿正方形ABCD的边作环绕运动,物体甲按逆时针方向匀速运动,物体乙按顺时针方向匀速运动,如果甲物体12秒钟可环绕一周回到A点,乙物体24秒钟可环绕一周回到A点,则两个物体运动后的第2017次相遇地点的坐标是(  )
A.(3,0)B.(-1,2)C.(-3,0)D.(-1,-2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.
(1)求证:CD是半圆O的切线;
(2)求$\frac{EF}{DH}$的比值;若DH=6,求EF和半径OA的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,无论用水多少,每户每月需另付损耗费2元,设每户每月用水量为x吨时,应交费用y元.
(1)写出y与x之间的函数表达式;
(2)小颖家四月份、五月份分别交费47.6元、40元,问小颖家五月份比四月份节约用水多少吨?

查看答案和解析>>

同步练习册答案