分析 设反比例函数关系式为y=$\frac{k}{x}$(k≠0),利用待定系数法可得反比例函数关系式y=$\frac{4}{x}$,根据反比例函数的性质可得在图象的每一支上,y随自变量x的增大而减小,然后求出当x=-3、x=-1时所对应的y的值.进而可得答案.
解答 解:设反比例函数关系式为y=$\frac{k}{x}$(k≠0),
∵图象经过点A(2,2),
∴k=2×2=4,
∴y=$\frac{4}{x}$,
当x=-3时,y=-$\frac{4}{3}$,
当x=-1时,y=-4,
∴当-3<x<-1时,-4<y<$-\frac{4}{3}$.
故答案为:-4<y<$-\frac{4}{3}$.
点评 此题主要考查了反比例函数的性质,以及待定系数法求反比例函数解析式,对于反比例函数y=$\frac{k}{x}$.当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.
科目:初中数学 来源: 题型:选择题
A. | ①②③ | B. | ①③④ | C. | ①②④ | D. | ①③ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com