【题目】一个矩形的长为a,宽为b(a>0,b>0),则矩形的面积为ab.代数式xy(x>0,y>0)可以看作是边长为x和y的矩形的面积.我们可以由此解一元二次方程:x2+x﹣6=0(x>0).具体过程如下:
①方程变形为x(x+1)=6.
②画四个边长为x+1、x的矩形如图放置;
③由面积关系求解方程.
∵SABCD=(x+x+1)2,又SABCD=4x(x+1)+12.
∴(x+x+1)2=4x(x+1)+1,又x(x+1)=6,
∴(2x+1)2=25,
∵x>0,
∴x=2.
参照上述方法求关于x的二次方程x2+mx﹣n=0的解(x>0,m>0,n>0).(要求:画出示意图,标注相关线段的长度,写出解题步骤)
科目:初中数学 来源: 题型:
【题目】已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20m,水位上升3m就达到警戒线CD,这是水面宽度为10m。
(1)在如图的坐标系中求抛物线的解析式。
(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】桌面上放有张卡片,正面分别标有数字,,,.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加.
请用列表或画树状图的方法求两数之和为的概率;
若甲与乙按上述方式做游戏,当两数之和为时,甲胜;当两数之和不为时,则乙胜.若甲胜一次得分,谁先达到分为胜.那么乙胜一次得多少分,这个游戏对双方公平?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120 ,∠B=∠ADC=90°.E、F分别是 BC,CD 上的点。且∠EAF=60° . 探究图中线段BE,EF,FD 之间的数量关系。 小王同学探究此问题的方法是,延长 FD 到点 G,使 DG=BE,连结 AG,先证明△ABE≌△ADG, 再证明△AEF≌△AGF,可得出结论,他的结论应是_________;
探索延伸:如图2,若四边形ABCD中,AB=AD,∠B+∠D=180° .E,F 分别是 BC,CD 上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;
实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东 70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以55 海里/小时的速度前进,舰艇乙沿北偏东 50°的方向以 75 海里/小时的速度前进2小时后, 指挥中心观测到甲、乙两舰艇分别到达 E,F 处,且两舰艇之间的夹角为70° ,试求此时两舰 艇之间的距离。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断
A.甲正确,乙错误 B.乙正确,甲错误 C.甲、乙均正确 D.甲、乙均错误
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某小区要用篱笆围成一矩形花坛,花坛的一边用足够长的墙,另外三边所用的篱笆之和恰好为米.
(1)求矩形的面积(用表示,单位:平方米)与边(用表示,单位:米)之间的函数关系式(不要求写出自变量的取值范围);怎样围,可使花坛面积最大?
(2)如何围,可使此矩形花坛面积是平方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.
(1)Rt△ADE与Rt△BEC全等吗?并说明理由;
(2)△CDE是不是直角三角形?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com