精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).
(1)∠PBD的度数为 , 点D的坐标为(用t表示);
(2)当t为何值时,△PBE为等腰三角形?
(3)探索△POE周长是否随时间t的变化而变化?若变化,说明理由;若不变,试求这个定值.

【答案】
(1)解:45°;(t,t)
(2)解:①若PB=PE,

由△PAB≌△DQP得PB=PD,

显然PB≠PE,

∴这种情况应舍去.

②若EB=EP,

则∠PBE=∠BPE=45°.

∴∠BEP=90°.

∴∠PEO=90°﹣∠BEC=∠EBC.

在△POE和△ECB中,

∴△POE≌△ECB(AAS).

∴OE=CB=OC.

∴点E与点C重合(EC=0).

∴点P与点O重合(PO=0).

∵点B(﹣4,4),

∴AO=CO=4.

此时t=AP=AO=4.

③若BP=BE,

在Rt△BAP和Rt△BCE中,

∴Rt△BAP≌Rt△BCE(HL).

∴AP=CE.

∵AP=t,

∴CE=t.

∴PO=EO=4﹣t.

∵∠POE=90°,

∴PE=

= (4﹣t).

延长OA到点F,使得AF=CE,连接BF,如图2所示.

在△FAB和△ECB中,

∴△FAB≌△ECB.

∴FB=EB,∠FBA=∠EBC.

∵∠EBP=45°,∠ABC=90°,

∴∠ABP+∠EBC=45°.

∴∠FBP=∠FBA+∠ABP

=∠EBC+∠ABP=45°.

∴∠FBP=∠EBP.

在△FBP和△EBP中,

∴△FBP≌△EBP(SAS).

∴FP=EP.

∴EP=FP=FA+AP

=CE+AP.

∴EP=t+t=2t.

(4﹣t)=2t.

解得:t=4 ﹣4

∴当t为4秒或(4 ﹣4)秒时,△PBE为等腰三角形


(3)解:∵EP=CE+AP,

∴OP+PE+OE=OP+AP+CE+OE

=AO+CO

=4+4

=8.

∴△POE周长是定值,该定值为8


【解析】解:(1)如图1,
由题可得:AP=OQ=1×t=t(秒)
∴AO=PQ.
∵四边形OABC是正方形,
∴AO=AB=BC=OC,
∠BAO=∠AOC=∠OCB=∠ABC=90°.
∵DP⊥BP,
∴∠BPD=90°.
∴∠BPA=90°﹣∠DPQ=∠PDQ.
∵AO=PQ,AO=AB,
∴AB=PQ.
在△BAP和△PQD中,

∴△BAP≌△PQD(AAS).
∴AP=QD,BP=PD.
∵∠BPD=90°,BP=PD,
∴∠PBD=∠PDB=45°.
∵AP=t,
∴DQ=t.
∴点D坐标为(t,t).
故答案为:45°,(t,t).
(1)易证△BAP≌△PQD,从而得到DQ=AP=t,从而可以求出∠PBD的度数和点D的坐标.(2)由于∠EBP=45°,故图1是以正方形为背景的一个基本图形,容易得到EP=AP+CE.由于△PBE底边不定,故分三种情况讨论,借助于三角形全等及勾股定理进行求解,然后结合条件进行取舍,最终确定符合要求的t值.(3)由(2)已证的结论EP=AP+CE很容易得到△POE周长等于AO+CO=8,从而解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,矩形ABCD的对角线ACBD交于点O,过点DDPOC,且DPOC,连接CP.

(1)判断四边形CODP的形状并说明理由;

(2)如图②,如果题目中的矩形变为菱形,判断四边形CODP的形状并说明理由;

(3)如图③,如果题目中的矩形变为正方形,判断四边形CODP的形状并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:

对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图,若PAPB,则点P在线段AB的垂直平分线上.

请根据阅读材料,解决下列问题:

如图,直线CD是等边ABC的对称轴,点DAB上,点E是线段CD上的一动点(点E不与点CD重合),连结AEBEABE经顺时针旋转后与BCF重合.

1)旋转中心是点   ,旋转了   (度);

2)当点E从点D向点C移动时,连结AF,设AFCD交于点P,在图中将图形补全,并探究APC的大小是否保持不变?若不变,请求出APC的度数;若改变,请说出变化情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解学生体育训练的情况,某市从全市九年级学生中随机抽取部分学生进行了一次体育科目测试(把成绩结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)求本次抽样测试的学生人数;
(2)求扇形图中∠α的度数,并把条形统计图补充完整;
(3)该市九年级共有学生9000名,如果全部参加这次体育测试,则测试等级为D的约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在矩形ABCD中,AB10 cmBC8 cm.P从点A出发,沿A→B→C→D的路线运动,到点D停止;点Q从点D出发,沿D→C→B→A的路线运动,到点A停止.若点P、点Q同时出发,点P的速度为每秒1 cm,点Q的速度为每秒2 cma秒时,点P、点Q同时改变速度,点P的速度变为每秒b cm,点Q的速度变为每秒d cm.图②是点P出发x秒后APD的面积S1(cm2)与时间x()的函数关系图象;图③是点Q出发x秒后AQD的面积S2(cm2)与时间x()的函数关系图象

(1)参照图②,求ab及图②中c的值;

(2)d的值;

(3)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后,y1y2与出发后的运动时间x()的函数关系式,并求出点P、点Q相遇时x的值;

(4)当点Q出发__ __秒时,点Q的运动路程为25 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列等式成立的是( )

A. -a-b2+a-b2=-4ab B. -a-b2+a-b2=a2+b2

C. -a-b)(a-b=a-b2 D. -a-b)(a-b=b2-a2

【答案】D

【解析】解析:∵-a-b2+a-b2=a+b2+a-b2=a2+2ab+b2+a2-2ab+b2=2a2+2b2

∴选项A与选项B错误;

-a-b)(a-b=-a+b)(a-b=-a2-b2=b2-a2∴选项C错误,选项D正确.

故选D.

型】单选题
束】
8

【题目】x=1y=x2+4xy+4y2的值是

A. 2 B. 4 C. 32 D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为(
A.3cm
B.4cm
C.5cm
D.8cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料并回答问题: 材料1:如果一个三角形的三边长分别为a,b,c,记 ,那么三角形的面积为
古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.
我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:
下面我们对公式②进行变形: = = = = =
这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.
问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.

(1)求△ABC的面积;
(2)求⊙O的半径.

查看答案和解析>>

同步练习册答案