精英家教网 > 初中数学 > 题目详情
已知一次函数y=kx+m和二次函数y=ax2+bx+c的图象相交于A(1,4)和B(-2,-5),并且二次函数y=ax2+bx+c的图象经过一次函数y=2x+3的图象与y轴的交点,试求一次函数与二次函数的解析式.
【答案】分析:将点A(1,4)和B(-2,-5)代入一次函数y=kx+m,利用待定系数法求一次函数的解析式;然后求出一次函数y=2x+3的图象与y轴的交点是(0,3),最后将A(1,4)、B(-2,-5)和
(0,3)代入二次函数y=ax2+bx+c,利用待定系数法求二次函数的解析式.
解答:解:∵一次函数y=kx+m和二次函数y=ax2+bx+c的图象相交于A(1,4)和B(-2,-5),

解得,
∴一次函数的解析式是:y=3x+1;
又∵一次函数y=2x+3的图象与y轴的交点是(0,3),
二次函数y=ax2+bx+c的图象经过一次函数y=2x+3的图象与y轴的交点,

解得,
∴二次函数的解析式:y=-x2+2x+3.
点评:本题考查了待定系数法求一次函数、二次函数解析式.函数图象上的点都满足函数的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知一次函数y=kx+2的图象经过A(-1,1).
(1)求此一次函数的解析式;
(2)求这个一次函数图象与x轴的交点B的坐标;画出函数图象;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知一次函数y=kx-1,若y随x的增大而减小,则该函数的图象经过(  )象限.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y=kx+b(k、b为常数)的图象与反比例函数y=
mx
(m为常数,精英家教网m≠0)的图象相交于点 A(1,3)、B(n,-1)两点.
(1)求上述两个函数的解析式;
(2)如果M为x轴正半轴上一点,N为y轴负半轴上一点,以点A,B,N,M为顶点的四边形是平行四边形,求直线MN的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一次函数y=kx+b的图象如图所示,指出k、b的符号,并求出k和b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一次函数y=kx+2,当x=5时,y的值为4,求k的值.

查看答案和解析>>

同步练习册答案