·ÖÎö£º£¨1£©ÏÈÔÚÖ±ÏßlÉÏÈ¡Á½µã£¬ÔÙ·Ö±ðµÃ³öÕâÁ½µãÈÆÔµãOÐýת180¡ãºóµÄ¶ÔÓ¦µã£¬È»ºóÔËÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öl¡äµÄ½âÎöʽ£»
£¨2£©ÏÈÔËÓõȱßÈý½ÇÐεÄÐÔÖÊÇó³öEF¡¢GHµÄ³¤¶È£¬ÔÙ¸ù¾ÝÌÝÐεÄÃæ»ý¹«Ê½Çó½â£»
£¨3£©¸ù¾ÝƽÒƵÄ֪ʶ¿ÉÖª£ºÑØy=
xƽÒÆʱ£¬Ãæ»ý²»±ä£»ÑØy=xƽÒÆʱ£¬Ãæ»ý¸Ä±ä£¬ÉèÆäÃæ»ýΪS'£®ÏÔÈ»£¬Èç¹û¡÷ABCÓël¡¢l¡äûÓн»µã£¬ÔòÃæ»ýS¡äÈ¡×îСֵ0£»ÓÉÓÚm=1ʱ£¬¡÷ABC½éÓÚÖ±Ïßl£¬l¡äÖ®¼äµÄ²¿·ÖÊÇÒ»¸öÌÝÐΣ¬lÓël¡äÖ®¼äµÄ¾àÀëÊÇ1£¬¼´ÌÝÐεĸßÊÇ1£¬Ôòµ±EF+GHÈ¡×î´óֵʱ£¬S¡äÓÐ×î´óÖµ£¬´ËʱֱÏßlÓël¡äÖÐÓÐÒ»Ìõ¹ýµãC£¬ÇÒF¡¢GÂäÔÚ¡÷ABCµÄͬһ±ßÉÏ£¬¿ÉÇóS¡ä=
£¬Ôò0¡ÜS'¡Ü
£®
½â´ð£º½â£º£¨1£©¡ßÒ»´Îº¯Êýy=
x+m£¨O£¼m¡Ü1£©ÓëxÖá½»ÓÚµãM£¨-
m£¬0£©£¬ÓëyÖá½»ÓÚµãN£¨0£¬m£©£¬
¡àµãM¡¢NÈÆÔµãOÐýת180¡ãºóµÄ¶ÔÓ¦µãM¡ä£¨
m£¬0£©£¬ÓëyÖá½»ÓÚµãN£¨0£¬-m£©£¬
ÓÉÌâÒ⣬֪M¡ä¡¢N¡äÔÚÖ±Ïßl¡äÉÏ£¬
ÔËÓôý¶¨ÏµÊý·¨Ò×µÃÖ±Ïßl¡äµÄ½âÎöʽΪy=
x-m£»
£¨2£©¡ßA£¨-
£¬-1£©¡¢C£¨O£¬2£©£¬¡àÖ±ÏßACµÄ½âÎöʽΪy=
x+2£¬
ÓÖ¡ßÖ±ÏßlµÄ½âÎöʽΪy=
x+m£¬Ö±Ïßl¡äµÄ½âÎöʽΪy=
x-m£¬
¡àl¡Îl¡ä¡ÎAC£®
¡ßA£¨-
£¬-1£©¡¢B£¨
£¬-1£©¡¢C£¨O£¬2£©£¬
¡àAB=BC=CA=2
£¬
¡à¡÷ABCÊǵȱßÈý½ÇÐΣ®
¡ßµ±y=-1ʱ£¬
x+m=-1£¬x=
£¬¡àE£¨
£¬-1£©£¬BE=
-
=
£¬
µ±y=-1ʱ£¬
x-m=-1£¬x=
£¬¡àH£¨
£¬-1£©£¬BH=
-
=
£¬
¡ßl¡ÎAC£¬¡÷ABCÊǵȱßÈý½ÇÐΣ¬¡à¡÷BEFÊǵȱßÈý½ÇÐΣ¬EF=BE=
£¬
ͬÀí£¬HG=BH=
£®
¹ýµãO×÷OD¡ÍMNÓÚD£¬Ôò2ODÊÇÌÝÐÎEFGHµÄ¸ß£®
¡ßµãM£¨-
m£¬0£©£¬µãN£¨0£¬m£©£¬¡àMN=
£®
ÔÚ¡÷OMNÖУ¬ÓÉÃæ»ý¹«Ê½£¬µÃOD=
=
m£¬¡à2OD=m£¬
¡àÌÝÐÎEFGHµÄÃæ»ýS=
£¨EF+GH£©•2OD=
m£¨
+
£©=
m£¬
¡ß
£¾0£¬
¡àSËæmµÄÔö´ó¶øÔö´ó£¬
ÓÖ¡ß0£¼m¡Ü1£¬
¡à0£¼S¡Ü
£»
£¨3£©Èç¹û¡÷ABCÑØÖ±Ïßy=
xƽÒÆ£¬ÓÉƽÒƵÄ֪ʶ¿ÉÖªÃæ»ý²»±ä£»
Èç¹û¡÷ABCÑØÖ±Ïßy=xƽÒÆ£¬Ãæ»ý¸Ä±ä£¬ÉèÆäÃæ»ýΪS'£¬
Ò×ÖªS¡ä×îСֵΪ0£¬S¡äÈ¡×î´óֵʱ£¬Ö±ÏßlÓël¡äÖÐÓÐÒ»Ìõ¹ýµãC£¬ÇÒF¡¢GÂäÔÚ¡÷ABCµÄͬһ±ßÉÏ£¬
ÈçͼËùʾ£¬´ËʱÇóµÃS'=
£®
Ôò0¡ÜS'¡Ü
£®