精英家教网 > 初中数学 > 题目详情
2.在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E,F分别是AC,BC边上一点.
(1)求证:$\frac{AC}{BC}$=$\frac{CD}{BD}$;
(2)若CE=$\frac{1}{3}$AC,BF=$\frac{1}{3}$BC,求∠EDF的度数.

分析 (1)证相关线段所在的三角形相似即可,即证Rt△ADC∽Rt△CDB;
(2)易证得CE:BF=AC:BC,联立(1)的结论,即可得出CE:BF=CD:BD,由此易证得△CED∽△BFD,即可得出∠CDE=∠BDF,由于∠BDF和∠CDF互余,则∠EDC和∠CDF也互余,由此可求得∠EDF的度数.

解答 解:(1)∵CD⊥AB,
∴∠A+∠ACD=90°
又∵∠A+∠B=90°
∴∠B=∠ACD
∴Rt△ADC∽Rt△CDB
∴$\frac{AC}{BC}$=$\frac{CD}{BD}$;

(2)∵$\frac{CE}{BF}$=$\frac{\frac{1}{3}AC}{\frac{1}{3}BC}$=$\frac{AC}{BC}$,
又∵∠ACD=∠B,
∴△CED∽△BFD;
∴∠CDE=∠BDF;
∴∠EDF=∠EDC+∠CDF=∠BDF+∠CDF=∠CDB=90°.

点评 此题考查的是相似三角形的判定和性质;识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.已知点A在数轴上对应的有理数为a,将点A向左移动6个单位长度,再向右移动2个单位长度与点B重合,点B对应的有理数为-24.
(1)求a;
(2)如果数轴上的点C在数轴上移动3个单位长度后,距B点8个单位长度,那么移动前的点C距离原点有几个单位长度?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在?ABCD中,点G在边BC的延长线上,AG与边CD交于点E,与对角线BD交于点F,求证:AF2=EF•FG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算:sin30°•tan30°-$\frac{1}{3}$cos60°•cot30°+$\frac{tan45°}{si{n}^{2}45°}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,根据道路管理规定,直线l的路段上行驶的车辆,限速60千米/时,已知测速站点M距离直线l的距离MN为30米(如图所示),现有一辆汽车匀速行驶,测得此车从A点行驶到B点所用时间为6秒,∠AMN=60°,∠BMN=45°.
(1)计算AB的长;
(2)通过计算判断此车是否超速.($\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:
(1)9-(-11)+(-4)-|-3|
(2)(-1)2×(-5)+(-2)3÷4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.解方程组:
(1)$\left\{\begin{array}{l}{3x+4y=19}\\{x-y=4}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{3s-2t=0}\\{12s+3t=33}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{\frac{x+y}{4}-\frac{x-y}{3}=0}\\{\frac{x+y}{4}+\frac{x-y}{6}=3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在⊙O中,弦BC垂直平分半径OD,BC交OD于K,延长DO交DO于A,连接AB、AC
(1)求证:△ABC为等边三角形;
(2)若弧BM=弧DM,CM交BD于点P,连接KP,求sin∠BKP;
(3)在(2)的条件下,若PK=2$\sqrt{3}$,求点D到MC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在△ABC中,AB=13,BC=10,BC边上的中线AD=12,求AC的长.(提示:请准确作图)

查看答案和解析>>

同步练习册答案