精英家教网 > 初中数学 > 题目详情
7.如图所示,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件:①∠APB=∠EPC;②∠APE=∠APB;③P是BC的中点;④BP:BC=2:3,其中能推出△ABP∽△ECP的有(  )
A.1个B.2个C.3个D.4个

分析 利用相似三角形的判定定理,以及正方形的性质逐项判断即可.

解答 解:∵四边形ABCD为正方形,
∴AB=BC=CD,∠B=∠C=90°,
∵E为CD中点,
∴CD=2CE,即AB=BC=2CE,
①当∠APB=∠EPC时,结合∠B=∠C,可推出△ABP∽△ECP;
②当∠APE=∠APB≠60°时,则有∠APB≠∠EPC,所以不能推出△ABP∽△ECP;
③当P是BC中点时,则有BC=2PC,可知PC=CE,则△PCE为等腰直角三角形,而BP≠AB,即△ABP不是等腰直角三角形,故不能推出△ABP∽△ECP;④当BP:BC=2:3时,则有BP:PC=2:1,且AB:CE=2:1,结合∠B=∠C,可推出△ABP∽△ECP相似;
故选B.

点评 本题考查了相似三角形的判定定理:(1)两角对应相等的两个三角形相似.(2)两边对应成比例且夹角相等的两个三角形相似.(3)三边对应成比例的两个三角形相似.(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.也考查了正方形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,若EF=3,则菱形ABCD的边长是6.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知一个直角三角形的两边长分别为3和4,则这个三角形斜边上的高为$\frac{3\sqrt{7}}{4}$或$\frac{12}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向远离灯的位置移动时,圆形阴影面积的大小的变化情况是变小.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,则x2-(a+b+cd)x+(a+b)2014+(-cd)2015的值为(  )
A.1B.5C.1或5D.无法计算

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.点 P(1,a-3)在第四象限,则a的取值范围是a<3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知x=3y,求$\frac{4xy}{{x}^{2}-{y}^{2}}$-$\frac{x+y}{x-y}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,P为正方形ABCD内一点,PB=1,PC=2,∠BPC=135°,求PD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知抛物线y=ax2+bx+c的顶点为A,经过点B(0,3)和点(2,3),与x轴交于C,D两点,(点C在点D的左侧),且OD=OB.
(1)求这条抛物线的表达式;
(2)连接AB,BD,DA,试判断△ABD的形状;
(3)点P是BD上方抛物线上的动点,当P运动到什么位置时,△BPD的面积最大?求出此时点P的坐标及△BPD的面积.

查看答案和解析>>

同步练习册答案