精英家教网 > 初中数学 > 题目详情
如图,若DE∥BC,且DE:BC=3:5,则AD:DB等于(   ).
A.2:3B.3:2C.3:5 D.5:3
B

试题分析:由DE∥BC可证得△ADE∽△ABC,再结合DE:BC=3:5根据相似三角形的性质求解即可.
∵DE∥BC
∴△ADE∽△ABC
∵DE:BC=3:5
∴AD:AB=3:5
∴AD:DB=3:2
故选B.
点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.

(1)求直线AB的解析式;
(2)当t为何值时,△APQ与△AOB相似?
(3)当t为何值时,△APQ的面积为个平方单位?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知△ABC的三边长分别为6cm,7.5cm,9cm,△DEF的一边长为4cm,当△DEF的另两边长是下列哪一组时,这两个三角形相似
A.2cm,3cmB.4cm,5cmC.5cm,6cmD.6cm,7cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在□ABCD中,AD = 6,点E在边AD上,且DE = 3,连接BE与对角线AC相交于点M,则的值为(    )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形ABCD中,对角线AC、BD相交于点G,E为AD的中点,连接BE交AC于点F,连接FD,若∠BFA=90°,则下列四对三角形:①△BEA与△ACD;②△FED与△DEB;③△CFD与△ABC;④△ADF与△CFB.其中相似的为

A.①④         B.①②             C.②③④           D.①②③

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.
 
(1)试求△ABC的面积;
(2)当边FG与BC重合时,求正方形DEFG的边长;
(3)设AD=x,当△BDG是等腰三角形时,求出AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)已知正方形ABCD ,点E、F、G、H分别在边AB、BC、CD、DA上,若EGFH,求证EG = FH”(如图1);

(2)如果把条件中的“正方形”改为“长方形”,并设AB =2,BC =3(如图2),试探究EG、FH之间有怎样的数量关系,并证明你的结论;

(3)如果把条件中的“EGFH”改为“EGFH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图3),试求EG的长度。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,点C在线段BD上,AB⊥BD,PD⊥BD,∠B=∠D=90°,AB=3,BC=6,CD=2,则当DE=         时,△ABC与△CDE相似.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.
(1)如图①,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为           .
(2)不改变①中灯泡的高度,将两个边长为30cm的正方形框架按图②摆放,请计算此时横向影子ABDC的长度和为多少?
(3)有n个边长为a的正方形按图③摆放,测得横向影子ABDC的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)

查看答案和解析>>

同步练习册答案