精英家教网 > 初中数学 > 题目详情
阅读下面的文字,回答后面的问题.
求3+32+33+…+3100的值.
解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2),(2)-(1)得到:2S=3101-3

∴3+32+33+…+3100=
问题(1)2+22+…+22011的值为______;(直接写出结果)
(2)求4+12+36+…+4×350的值;
(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果)

【答案】分析:(1)根据题中所给的S的表达式及同底数幂的乘法法则求出2S的表达式,再把两式相减即可求出S的值;
(2)先求出3+32+33+…+340的值,再乘以4即可求出4+12+36+…+4×340的值;
(3)由题意可知一直作图到第10个图形为止的所有的等腰直角三角形的所有边长之和可以根据同底数幂的乘法法则求出 2S的表达式,再把两式相减即可求出S的值,从而所有的等腰直角三角形的所有边长之和.
解答:解:(1)22012-2(3分)

(2)令S=4+12+36+…+4×350 ①,
将等式两边提示乘以3得到:3S=12+36+108+…+4×351 ②,
②-①得到:2S=4×341-4
∴S=2×351-2
∴4+12+36+…+4×350=2×351-2(9分)

(3)(12分)
点评:本题考查的是有理数的乘方及同底数幂的乘法法则,根据题意求出乘以底数后和的表达式是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读下面的文字,回答后面的问题.
求3+32+33+…+3100的值.
解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2),(2)-(1)得到:2S=3101-3
S=
3101-32

问题(1)求2+22+…+2100的值;
(2)求4+12+36+…+4×340的值;
(3)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第二个正方形AEGH,如此下去…一直作图到第10个图形为止.已知正方形ABCD的边长为1,求所有的正方形的所有边长之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读下面的文字,回答后面的问题:求5+52+53+…+5100的值.
解:令S=5+52+53+…+5100(1),将等式两边同时乘以5得到:5S=52+53+54+…+5101(2),
(2)-(1)得:4S=5101-5,∴S=
5101-54

问题:(1)求2+22+23+…+2100的值;(2)求4+12+36+…+4×340的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的文字,回答后面的问题.
求3+32+33+…+3100的值.
解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2),(2)-(1)得到:2S=3101-3
S=
3101-3
2

∴3+32+33+…+3100=
3101-3
2

问题(1)2+22+…+22011的值为
22012-2
22012-2
;(直接写出结果)
(2)求4+12+36+…+4×350的值;
(3)如图,在等腰Rt△OAB中,OA=AB=1,以斜边OB为腰作第二个等腰Rt△OBC,再以斜边OC为腰作第三个等腰Rt△OCD,如此下去…一直作图到第8个图形为止.求所有的等腰直角三角形的所有斜边之和.(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读下面的文字,回答后面的问题:求5+52+53+…+5100的值.
解:令S=5+52+53+…+5100(1),将等式两边同时乘以5得到:5S=52+53+54+…+5101(2),
(2)-(1)得:4S=5101-5,∴数学公式
问题:(1)求2+22+23+…+2100的值;(2)求4+12+36+…+4×340的值.

查看答案和解析>>

科目:初中数学 来源:2012年广东省中考数学押题卷(一)(解析版) 题型:解答题

阅读下面的文字,回答后面的问题.
求3+32+33+…+3100的值.
解:令S=3+32+33+…+3100(1),将等式两边提示乘以3得到:3S=32+33+34+…+3101(2),(2)-(1)得到:2S=3101-3

问题(1)求2+22+…+2100的值;
(2)求4+12+36+…+4×340的值;
(3)如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第二个正方形AEGH,如此下去…一直作图到第10个图形为止.已知正方形ABCD的边长为1,求所有的正方形的所有边长之和.

查看答案和解析>>

同步练习册答案