精英家教网 > 初中数学 > 题目详情
2、在线段、直角、等腰三角形、直角三角形中,成轴对称图形的是
线段、直角、等腰三角形
分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对常见图形进行判断.
解答:解:线段的垂直平分线所在的直线是对称轴,是轴对称图形,符合题意;
直角的角平分线所在的直线就是对称轴,是轴对称图形,符合题意;
等腰三角形底边中线所在的直线是对称轴,是轴对称图形,符合题意;
直角三角形不一定是轴对称图形,不符合题意.
故成轴对称图形的是:线段、直角、等腰三角形.
故答案为:线段、直角、等腰三角形.
点评:本题考查了轴对称的概念.轴对称的关键是寻找对称轴,图象沿某一直线折叠后可以重合.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角梯形OABC中,OA∥BC,∠B=90°,OA=6,AB=4,BC=3,以O为原点,以OA所在的直线为x轴建立平面直角坐标系,动点P从原点O出发,沿O?C?B?A的方向以每秒2两个单位长的速度运动,动点Q也从原点出发,在线段OA上以每秒1个单位长的速度向点A运动,点P、Q同时出发,当点Q运动到点A时,点P随之停止运动,设运动的时间为t(秒)精英家教网
(1)求点C的坐标和线段OC的长;
(2)设△OPQ的面积为S,求S与t之间的函数关系式;
(3)当点P在线段CB上运动时,是否存在以C、P、Q三点为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,直线y=-2x+2与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作等精英家教网腰直角△ABC,∠BAC=90°,过C作CD⊥x轴,垂足为D.
(1)求点A、B的坐标和AD的长;
(2)求过B、A、D三点的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•黄冈模拟)直角梯形ABCD在直角坐标系中的位置如图所示,AD∥BC,∠DCB=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向以每秒2个单位长度的速度运动,动点Q从点B出发,在线段BC上以每秒1个单位长得速度向点C运动,点P、Q分别从点D、B同时出发,当点Q运动到与点C重合时,点P随之停止运动.设运动时间为t(秒)
(1)设△BPQ的面积为S,求S与t之间的函数关系式.
(2)当t为何值时,以B,P,Q三点为顶点的三角形时等腰三角形?
(3)是否存在某一时刻t,使直线PQ恰为B、C两点的抛物线的对称轴?若不存在,能否改变其中一个点的运动速度,使某一时刻直线PQ是过B、C两点的抛物线的对称轴,并求出改变后的速度.
(4)是否存在某一时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•张家口一模)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
(1)请你通过计算说明△ABC的形状为
等腰直角三角形
等腰直角三角形

(2)画线段AD∥BC且使AD=BC,连接CD.请你判断四边形ABCD的形状,求出它的面积是
5
5

(3)若E为AC中点,则sin∠ABE=
5
5
5
5
,cos∠CAD=
2
2
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衢州)如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.
(1)求该抛物线的函数解析式;
(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.
(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案