精英家教网 > 初中数学 > 题目详情
如图,已知直线y=x与抛物线y=
1
2
x2
交于A、B两点.
(1)求交点A、B的坐标;
(2)记一次函数y=x的函数值为y1,二次函数y=
1
2
x2
的函数值为y2.若y1>y2,求x的取值范围;
(3)在该抛物线上存在几个点,使得每个点与AB构成的三角形为等腰三角形?并求出不少于3个满足条件的点P的坐标.
(1)如图,∵直线y=x与抛物线y=
1
2
x2
交于A、B两点,
y=x
y=
1
2
x2

解得,
x=0
y=0
x=2
y=2

∴A(0,0),B(2,2);

(2)由(1)知,A(0,0),B(2,2).
∵一次函数y=x的函数值为y1,二次函数y=
1
2
x2
的函数值为y2
∴当y1>y2时,根据图象可知x的取值范围是:0<x<2;

(3)该抛物线上存在4个点,使得每个点与AB构成的三角形为等腰三角形.理由如下:
∵A(0,0),B(2,2),
∴AB=2
2

根据题意,可设P(x,
1
2
x2).
①当PA=PB时,点P是线段AB的中垂线与抛物线的交点.
易求线段AB的中垂线的解析式为y=-x+2,
y=-x+2
y=
1
2
x2

解得,
x1=-
5
-1
y1=3+
5
x2=
5
-1
y2=3-
5

∴P1(-
5
-1,3+
5
),P2
5
-1,3-
5
);
②当PA=AB时,根据抛物线的对称性知,点P与点B关于y轴对称,即P3(-2,2);
③当AB=PB时,点P4的位置如图所示.
综上所述,符号条件的点P有4个,其中P1(-
5
-1,3+
5
),P2
5
-1,3-
5
),P3(-2,2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点M在第一象限,抛物线与x轴相交于A、B两点(点A在点B的左边),与y轴交与点C,O为坐标原点,如果△ABM是直角三角形,AB=2,OM=
5

(1)求点M的坐标;
(2)求抛物线y=ax2+bx+c的解析式;
(3)在抛物线的对称轴上是否存在点P,使得△PAC为直角三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

丁丁推铅球的出手高度为1.6m,在如图所示的抛物线y=-0.1(x-k)2+2.5上,求铅球的落点与丁丁的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

学校大门如图所示是一抛物线形水泥建筑物,大门的地面宽度为8米,两侧距地4米高处各有一挂校名横匾用的铁环,两铁环的水平距离为6米,则该校门的高度(精确到0.1米)为(  )
A.8.9米B.9.1米C.9.2米D.9.3米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,以AB为直径的⊙C交x轴于A,交y轴于B,满足OA:OB=4:3,以OC为直径作⊙D,设⊙D的半径为2.
(1)求⊙C的圆心坐标;
(2)过C作⊙D的切线EF交x轴于E,交y轴于F,求直线EF的解析式;
(3)抛物线y=ax2+bx+c(a≠0)的对称轴过C点,顶点在⊙C上,与y轴交点为B,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=kx2+2kx-3k,交x轴于A、B两点(A在B的左边),交y轴于C点,且y有最大值4.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使△PBC是直角三角形?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)点D的坐标为(-2,0).问:直线AC上是否存在点F,使得△ODF是等腰三角形?若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2-2ax+3的图象与x轴交于点A,点B,与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+b,又tan∠OBC=1.
(1)求二次函数的解析式和直线DC的函数关系式;
(2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标.

查看答案和解析>>

同步练习册答案