精英家教网 > 初中数学 > 题目详情
9.直角三角形的两条直角边分别是3$\sqrt{6}$,3$\sqrt{3}$,则斜边上的高为3$\sqrt{2}$.

分析 根据勾股定理可以求得斜边的长,然后根据等积法可以求得斜边上的高.

解答 解:∵直角三角形的两条直角边分别是3$\sqrt{6}$,3$\sqrt{3}$,
∴斜边长为:$\sqrt{(3\sqrt{6})^{2}+(3\sqrt{3})^{2}}=9$,
∴斜边上的高为:$\frac{3\sqrt{6}×3\sqrt{3}}{9}=3\sqrt{2}$,
故答案为:3$\sqrt{2}$.

点评 本题考查二次根式的应用,解答本题的关键是明确题意,找出所求问题需要的条件.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.实数m、n满足|m-2|+(n-2017)2=0,则m-1+n0=$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.你能利用数形结合的思想解决下列问题吗?
(1)如图①,一个边长为1的正方形,依次取正方形面积的$\frac{1}{2}$、$\frac{1}{4}$、$\frac{1}{8}$、…、$\frac{1}{{2}^{n}}$,根据图示我们可以知道:$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+$\frac{1}{16}$+…+$\frac{1}{{2}^{n}}$=1-$\frac{1}{{2}^{n}}$.(用含有n的式子表示)
(2)如图②,一个边长为1的正方形,依次取剩余部分的$\frac{2}{3}$,根据图示:
计算:$\frac{2}{3}$+$\frac{2}{9}$+$\frac{2}{27}$+…+$\frac{2}{{3}^{n}}$=1-$\frac{1}{{3}^{n}}$.(用含有n的式子表示)
(3)如图③是一个边长为1的正方形,根据图示:
计算:$\frac{1}{3}$+$\frac{2}{9}$+$\frac{4}{27}$+$\frac{8}{81}$+…+$\frac{{2}^{n-1}}{{3}^{n}}$=1-$\frac{{2}^{n}}{{3}^{n}}$.(用含有n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.观察下列各题:
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
   …
(1)根据上面各式的规律,请直接写出1+3+5+7+9+…+99=2500=502
(2)请写出第n个式子的表达式(n+1)2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.一个寻宝游戏的通道平面图如图1所示(正方形ABCD是⊙O的内接四边形),图中的所有线段和弧线都是通道.为了记录寻宝者的行进路线,相关人员在点O处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x之间的函数关系的图象如图2所示,则寻宝者的行进路线可能为…(  )
A.线段OA→劣弧AD→线段DOB.劣弧AD→线段DO→线段OC
C.劣弧AD→劣弧DC→线段COD.线段OB→劣弧BC→劣弧CD

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,正方形网格中每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点的三角形叫做格点三角形.
(1)求格点三角形ABC的面积;
(2)在网格图中画出△ABC先向右平移4个单位,再向上平移3个单位后的△A1B1C1
(3)画出格点三角形ABC绕点C逆时针旋转90°后的△A2B2C2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,…,试猜想,32017的个位数字是3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:(-2)2×5+|π-1|-$\sqrt{9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.满足方程$\sqrt{3x-4}$+$\root{3}{5-3x}$=1的所有实数x的和为$\frac{22}{3}$.

查看答案和解析>>

同步练习册答案