精英家教网 > 初中数学 > 题目详情

一个直角三角形,两直角边长分别为3和4,下列说法正确的是


  1. A.
    斜边长为5
  2. B.
    三角形的周长为25
  3. C.
    斜边长为25
  4. D.
    三角形的面积为20
A
分析:利用勾股定理求出后直接选取答案.
解答:两直角边长分别为3和4,
∴斜边==5;
故选A.
点评:此题较简单关键是熟知勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

根据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.
(1)观察:①3,4,5;②5,12,13;③7,24,25;…发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且
1
2
(9-1)=4,
1
2
(9+1)=5和
1
2
(25-1)=12,
1
2
(25+1)=13
发现规律:勾为n(n≥3,且n为奇数)时有:股=
1
2
(n2-1),弦=
1
2
(n2+1)分别写出能表示7,24,25的股和弦的算式?
(2)根据(1)的规律,用n(n为奇数,且n≥3)的代数式来表示所有这些勾股数的勾,股,弦,合理猜想它们之间的两种等量关系并对其中一种猜想加以证明?
(3)继续观察①4,3,5;②6,8,10;②8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用类似上述的探索的方法,直接用m(m为偶数,且m≥4)的代数式来表示它们的股和弦.

查看答案和解析>>

科目:初中数学 来源:活学巧练八年级数学(下) 题型:044

据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦就等于五,后人概括为“勾三、股四、弦五”.

(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.计算(9-1),(9+1)与(25-1),(25+1),并根据你发现的规律,分别写出能表示7,24,25的的算式;

(2)根据(1)的规律,用n(n为奇数且n≥3)的代数式来表示所有这些勾股数的,合理猜想他们之间两种相等关系并对其中一种猜想加以证明;

(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用类似上述探索的方法,直接用m(m为偶数且m>4)的代数式来表示他们的

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

根据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.
(1)观察:①3,4,5;②5,12,13;③7,24,25;…发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且数学公式(9-1)=4,数学公式(9+1)=5和数学公式(25-1)=12,数学公式(25+1)=13
发现规律:勾为n(n≥3,且n为奇数)时有:股=数学公式(n2-1),弦=数学公式(n2+1)分别写出能表示7,24,25的股和弦的算式?
(2)根据(1)的规律,用n(n为奇数,且n≥3)的代数式来表示所有这些勾股数的勾,股,弦,合理猜想它们之间的两种等量关系并对其中一种猜想加以证明?
(3)继续观察①4,3,5;②6,8,10;②8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用类似上述的探索的方法,直接用m(m为偶数,且m≥4)的代数式来表示它们的股和弦.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

据我国古代《周髀算经》记载,公元前1120年商高对周公说:将一根直尺折成一个直角,两端连接得一个直角三角形,如果勾是三、股是四,那么弦等于五,后人概括为“勾三、股四、弦五”。
(1)观察:3,4,5;5,12,13;7,24,25;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过,计算,并根据你发现的规律,分别写出能表示7,24,25的股和弦的算式;
(2)根据(1)的规律,用n(n为奇数且n≥3)的式子来表示所有这些勾股数的勾、股、弦,猜想它们之间两种相等关系并对其中一种猜想加以证明;
(3)继续观察4,3,5;6,8,10;8,15,17;…,可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用类似上述探索的方法,直接用m(m为偶数且m≥4)的式子来表示它们的股和弦。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

根据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.
(1)观察:①3,4,5;②5,12,13;③7,24,25;…发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且
1
2
(9-1)=4,
1
2
(9+1)=5和
1
2
(25-1)=12,
1
2
(25+1)=13
发现规律:勾为n(n≥3,且n为奇数)时有:股=
1
2
(n2-1),弦=
1
2
(n2+1)分别写出能表示7,24,25的股和弦的算式?
(2)根据(1)的规律,用n(n为奇数,且n≥3)的代数式来表示所有这些勾股数的勾,股,弦,合理猜想它们之间的两种等量关系并对其中一种猜想加以证明?
(3)继续观察①4,3,5;②6,8,10;②8,15,17;…可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用类似上述的探索的方法,直接用m(m为偶数,且m≥4)的代数式来表示它们的股和弦.

查看答案和解析>>

同步练习册答案