精英家教网 > 初中数学 > 题目详情
如图,以正方形ABCD的边CD为一边,在正方形ABCD内作等边△CDE,BE交AC于点M,则∠AMD为
120°
120°
分析:由△CDE是等边三角形可以得出CD=CE=DE,∠DEC=∠DCE=∠EDC=60°,由四边形ABCD是正方形,可以得出AB=CB=CD=AD,∠BAC=∠DAC=45°,可以得出CE=CB,求出∠CBM=75°,得到∠ABM=15°,求出∠AMB=120,通过证明△ABM≌△ADM就可以求出∠AMD的度数.
解答:解:∵四边形ABCD是正方形,
∴AB=CB=CD=AD,∠BAC=∠DAC=45°,∠ABC=90°,
∵△CDE是等边三角形,
∴CD=CE=DE,∠DEC=∠DCE=∠EDC=60°,
∴CB=CE,∠BCE=30°,
∴∠CBM=∠CEB=75°,
∴∠ABM=15°,
∴∠AMB=120°.
∵△ABM≌△ADM,
∴∠AMB=∠AMD=120°.
故答案为:120°.
点评:本题考查了正方形的性质,等边三角形的性质及等腰三角形的性质的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=
12

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6
2
,那么AC的长等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的斜边BC为一边作正方形BCDE,设正方形的中心为O,连接AO,如果AB=3,AO=2
2
,那么AC的长等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的斜边和一直角边为边长向外作正方形,面积分别为169和25,则另一直角边的长度BC为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC各边为边长的正方形面积分别为S1、S2、S3,且S1+S2+S3=50,则AB=(  )

查看答案和解析>>

同步练习册答案