【题目】某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨元收费
如果超过20吨,未超过的部分按每吨
元收费,超过的部分按每吨
元收费
设某户每月用水量为x吨,应收水费为y元.
设某户居民每月用水量为m吨
,则应收水费为______元
用含m的代数式表示
;
设某户居民每月用水量为m吨
,则应收水费为______元
用含m的代数式表示
;
若该城市某户5月份水费平均为每吨
元,求该户5月份用水多少吨?
【答案】(1)1.9m (2)2.8m﹣18 (3)30
【解析】
试题(1)因为月用水量不超过20吨时,按1.9元/吨计费,所以当m≤20时,应收税费1.9m;
(2)因为月用水量超过20吨时,其中的20吨仍按1.9元/吨收费,超过部分按2.8元/吨计费,所以当x>20时,应收水费为 1.9×20+2.8(m-20)=2.8m-18;
(3)由题意可得:5月份用水的量超过了20吨,然后可根据平均每吨的用水量可得2.8m-18=2.2m,求解即可.
试题解析:(1)1.9m
(2)2.8m﹣18
(3)∵5月份水费平均为每吨2.2元,用水量如果未超过20吨,按每吨1.9元收费.
∴用水量超过了20吨.
2.8x﹣18=2.2x,
x=30.
答:该户5月份用水30吨.
科目:初中数学 来源: 题型:
【题目】如图,直线y1=kx+b与双曲线y2= 交于A、B两点,它们的横坐标分别为1和5.
(1)当m=5时,求直线AB的解析式及△AOB的面积;
(2)当y1>y2时,直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=50°,把△ABC沿EF折叠,C对应点恰好与△ABC的外心O重合,则∠CFE的度数是( )
A.40°
B.45°
C.50°
D.55°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知a、b分别对应数轴上A、B两点,并且满足|a﹣2|+(3a+2b)2=0,点P为数轴上一个动点,它对应的数是x
(1)填空:a= ,b= ,AB= ;
(2)若P为线段AB上一点,并且PA=3PB,求x的值;
(3)若P点从A点出发以每秒2个单位的速度运动,那么出发几秒钟后,线段PA=4PB?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.
如:1☆3=1×32+2×1×3+1=16.
(1)求(﹣2)☆3的值;
(2)若(☆3)☆(﹣
)=8,求a的值;
(3)若2☆x=m,(x)☆3=n(其中x为有理数),试比较m,n的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是( )cm2
A. 28 B. 49 C. 98 D. 147
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点O是直线AB上一点,OC、OD为从点O引出的两条射线,∠BOD=30°,∠COD=∠AOC.
(1)如图①,求∠AOC的度数;
(2)如图②,在∠AOD的内部作∠MON=90°,请直接写出∠AON与∠COM之间的数量关系 ;
(3)在(2)的条件下,若OM为∠BOC的角平分线,试说明∠AON=∠CON.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以线段AC的两个端点A,C为圆心,大于AC的长为半径画弧,两弧相交于B,D两点,连接BD,AB,BC,CD,DA,以下结论:
①BD垂直平分AC;
②AC平分∠BAD;
③AC=BD;
④四边形ABCD是中心对称图形.
其中正确的有( )
A. ①②③ B. ①③④ C. ①②④ D. ②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com