A. | ①② | B. | ①④ | C. | ①②④ | D. | ①③④ |
分析 用正方形的性质和垂直的定义判断出四边形PECF是矩形,从而判定②正确;
直接用正方形的性质和垂直得出①正确,
利用全等三角形和矩形的性质得出④正确,
由点P是正方形对角线上任意一点,说明AD和PD不一定相等,得出③错误.
解答 解:如图,
∵P为正方形ABCD的对角线BD上任一点,
∴PA=PC,∠C=90°,
∵过点P作PE⊥BC于点E,PF⊥CD,
∴∠PEC=∠DFP=∠PFC=∠C=90°,
∴四边形PECF是矩形,
∴PC=EF,
∴PA=EF,故②正确,
∵BD是正方形ABCD的对角线,
∴∠ABD=∠BDC=∠DBC=45°,
∵∠PFC=∠C=90°,
∴PF∥BC,
∴∠DPF=45°,
∵∠DFP=90°,
∴△FPD是等腰直角三角形,故①正确,
在△PAB和△PCB中,
$\left\{\begin{array}{l}{AB=CB}\\{∠ABP=∠CBP}\\{BP=BP}\end{array}\right.$,
∴△PAB≌△PCB,
∴∠BAP=∠BCP,
在矩形PECF中,∠PFE=∠FPC=∠BCP,
∴∠PFE=∠BAP.故④正确,
∵点P是正方形对角线BD上任意一点,
∴AD不一定等于PD,
只有∠BAP=22.5°时,AD=PD,故③错误,
故选C
点评 此题是四边形综合题,主要考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,垂直的定义,解本题的关键是判断出四边形PECF是矩形.
科目:初中数学 来源: 题型:选择题
A. | 15° | B. | 30° | C. | 45° | D. | 60° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 60° | B. | 70° | C. | 55° | D. | 40° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 20° | B. | 25° | C. | 30° | D. | 35° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com