精英家教网 > 初中数学 > 题目详情
精英家教网如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=
45
,点P在线段OC上,且PO、OC的长是方程x2-15x+36=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以A、Q、C、P为顶点的四边形是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.
分析:(1)通过解方程x2-15x+36=0,得OP、OC的长度,即可推出P点的坐标,(2)根据直角三角形的性质,推出Cos∠ABC=
4
5
=Cos∠ACO=
OC
AC
,结合已知条件即可推出AP的长度,
(3)首先设出Q点的坐标,分情况讨论,①AP∥CQ,然后根据
OA
OQ
=
OP
OC
,即可求出OQ的长度,即可得Q点的坐标,然后根据P和Q点的坐标即可推出直线PQ的解析式,②PQ∥AC,分别求出即可.
解答:解:(1)∵PO、OC的长是方程x2-15x+36=0的两根,OC>PO,
∴PO=3,OC=12(2分)
∴P(0,-3)(2分)

(2)在Rt△OBC与Rt△AOC中,cos∠ABC=
4
5
=cos∠ACO,
CO
AC
=
4
5
(1分)
设CO=4K,AC=5K,∴CO=4K=12,K=3
∴AO=3K=9,∴A(-9,0)(2分)
∴AP=
81+9
=3
10
(1分)

(3)设在x轴上存在点Q(x,0)使四边形AQCP是梯形,
①AP∥CQ,∴
OA
OQ
=
OP
OC

∵OA=9,OP=3,OC=12,
∴OQ=36,则Q(-36,0),
设直线PQ的解析式为y=kx+b,将点P(0,-3),Q(-36,0)代入,得
-3=b
0=-36k+b

解得:
b=-3
k=-
1
12

②同理当PQ∥AC,可得PQ的解析式为:y=-
4
3
x+3;
∴所求直线PQ的解析式为y=-
1
12
x-3或y=-
4
3
x+3.
点评:本题主要考查解整式方程、解直角三角形、勾股定理、平行线的相关性质、求一次函数解析式,关键在于确定P点的坐标;根据解直角三角形求得AP的长度;根据平行线的性质,确定OQ的长度,确定Q点的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面内,函数y=
m
x
(x>0,m是常熟)的图象经过A(1,4),B(a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB
(Ⅰ)求函数y=
m
x
的解析式;
(Ⅱ)若△ABD的面积为4,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下列各题:
(1)解方程组
2x+y=2;         ①
3x-2y=10.      ②

(2)如图,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步练习册答案