精英家教网 > 初中数学 > 题目详情
4、如图,P是⊙O内一定点,请你在⊙O内作出过P点的最长弦和最短弦,标上字母,并指出最长弦是
AB
,最短弦是
CD
分析:圆内最长弦为直径,最短的弦为过这点且垂直于这条直径的线.
解答:解:最长的弦:AB
最短的弦:CD
故答案为:AB、CD.
点评:本题考查了垂径定理的内容,注:圆内最长弦为直径,最短的弦为过这点且垂直于这条直径的线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:
甲同学:这种多边形不一定是正多边形,如圆内接矩形.
乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,
AD
=
BE
=
CF
,证明六边形ADBECF的各内角相等,但它未必是正六边形.
丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.
(1)请你说明乙同学构造的六边形各内角相等;
(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求精英家教网证)
(3)根据以上探索过程,提出你的猜想.(不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•邯郸一模)如图,在直角坐标系中,正方形OABC是由四个边长为1的小正方形组成的,反比例函数y1=
k1
x
(x>0)
过正方形OABC的中心E,反比例函数y2=
k2
x
(x>0)
过AB的中点D,两个函数分别交BC于点N,M,有下列四个结论:
①双曲线y1的解析式为y1=
1
x
(x>0)

②两个函数图象在第一象限内一定会有交点;
③MC=2NC;
④反比例函数y2的图象可以是看成是由反比例函数y1的图象向上平移一个单位得到
其中正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

我们新定义一种三角形:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.
(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题,并说明理由;
(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;
(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆弧ADB的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.试说明△ACE是奇异三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•婺城区一模)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:

甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.
乙同学:我知道,边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…
丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.
(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC=
108°
108°
,请简要说明圆内接五边形ABCDE为正五边形的理由.
(2)如图2,请证明丙同学构造的六边形各内角相等.
(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

生活中的数学
(1)小明同学在某月的日历上圈出2×2个数(如图),正方形方框内的4个数的和是28,那么这4个数是
3、4、10、11
3、4、10、11

(2)小丽同学在日历上圈出5个数,呈十字框型(如图),他们的和是65,则正中间一个数是
13
13

(3)某月有5个星期日,这5个星期日的日期之和为80,则这个月中第一星期日的日期是
2
2
号;
(4)有一个数列每行8个数成一定规律排列如图:
①图中方框内的9个数的和是
252
252

②小刚同学在这个数列上圈了一个斜框(如图),圈出的9个数的和为522,求正中间的一个数.

查看答案和解析>>

同步练习册答案