A. | 2$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 2 | D. | 4 |
分析 连结BC,由AB为直径得∠ACB=90°,由F,C,B三等分半圆得∠BOC=60°,则∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三边的关系得AC=2CD=8,在Rt△ACB中,根据勾股定理求得AB,进而求得⊙O的半径.
解答 解:连结BC,如图,
∵AB为直径,
∴∠ACB=90°,
∵$\widehat{AF}$=$\widehat{FC}$=$\widehat{CB}$,
∴∠BOC=$\frac{1}{3}$×180°=60°,
∴∠BAC=30°,
∴∠DAC=30°,
在Rt△ADC中,CD=2$\sqrt{3}$,
∴AC=2CD=4$\sqrt{3}$,
在Rt△ACB中,BC2+AC2=AB2,
即(4$\sqrt{3}$)2+($\frac{1}{2}$AB)2=AB2,
∴AB=8,
∴⊙O的半径为4.
故选D.
点评 本题考查了圆周角定理和含30度的直角三角形三边的关系,勾股定理,熟练掌握圆周角定理是解题的关键.
科目:初中数学 来源: 题型:解答题
x | … | -2 | -1 | -$\frac{1}{2}$ | 0 | $\frac{1}{2}$ | 1 | $\frac{3}{2}$ | 2 | $\frac{5}{2}$ | 3 | 4 | … |
y | … | $\frac{2}{5}$ | $\frac{4}{5}$ | $\frac{16}{13}$ | 2 | $\frac{16}{5}$ | 4 | $\frac{16}{5}$ | 2 | $\frac{16}{13}$ | $\frac{4}{5}$ | m | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com