分析 (1)证得AE=AF,则可证明以上两条线段所在的三角形全等即可;
(2)利用正方形的性质以及垂直定义得出∠1=∠3=∠4=∠5,进而利用全等三角形的判定与性质得出AP=DE,进而利用平行四边形的判定以及矩形的判定得出即可.
解答 证明:(1)△ADE≌△ABF;
∵四边形ABCD是正方形,
∴∠ADE=∠ABC=∠DAB=90°,AD=AB,AD∥BC,AB∥CD,
∵AF⊥AE,
∴∠EAF=90°,
∴∠DAE=∠BAF,
在△ADE和△ABF中,
$\left\{\begin{array}{l}{∠DAE=∠BAF}\\{AD=AB}\\{∠ADE=∠ABF=90°}\end{array}\right.$,
∴△ADE≌△ABF(ASA);
(2)∵AF⊥AE,
∴∠1+∠2=90°,
∵∠2+∠3=90°,
∴∠1=∠3,
∵AD∥FC,
∴∠4=∠5,
∵∠1=∠5,
∴∠1=∠3=∠4=∠5,
在△ADE和△DAP中,
$\left\{\begin{array}{l}{∠3=∠4}\\{AD=AD}\\{∠ADE=∠DAP}\end{array}\right.$,
∴△ADE≌△DAP(ASA),
∴AP=DE,
又∵AP∥DE,
∴四边形APED是平行四边形,
∵∠PAD=90°,
∴平行四边形APED是矩形.
点评 此题主要考查了平行四边形的判定和矩形的判定以及正方形的性质等知识,根据已知得出∠1=∠3=∠4=∠5是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 等腰梯形 | B. | 直角梯形 | C. | 矩形 | D. | 菱形 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com