精英家教网 > 初中数学 > 题目详情
如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a-b=-1.
(1)求a,b,c的值;
(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.
①试求出S与t之间的函数关系式,并求出S的最大值;
②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
(1);(2)s=-(t-3)2+; (9,3).

试题分析:(1)由于四边形OABC是正方形,易知点A的坐标,将A、B的坐标分别代入抛物线的解析式中,联立3a-b=-1,即可求得待定系数的值.
(2)①用t分别表示出BE、BF的长,利用直角三角形面积公式求出△EBF的面积,从而得到关于S、t的函数关系式,根据函数的性质即可求得S的最大值;
②当S取最大值时,即可确定BE、BF的长,若E、B、R、F为顶点的四边形是平行四边形,可有两种情况:一、EB平行且相等于FR,二、ER平行且相等于FB;只需将E点坐标向上、向下平移BF个单位或将F点坐标向左、向右平移BE个单位,即可得到R点坐标,然后将它们代入抛物线的解析式中进行验证,找出符合条件的R点即可.
(1)由已知A(0,6),B(6,6)在抛物线上,
得方程组,解得

(2)①运动开始t秒时,EB=6-t,BF=t,
S=EB•BF=(6-t)t=-t2+3t,
以为S=-t2+3t=-(t-3)2+
所以当t=3时,S有最大值
②当S取得最大值时,
∵由①知t=3,
∴BF=3,CF=3,EB=6-3=3,
若存在某点R,使得以E,B,R,F为顶点的四边形是平行四边形,
则FR1=EB且FR1∥EB,
即可得R1为(9,3),R2(3,3);
或者ER3=BF,ER3∥BF,可得R3(3,9).
再将所求得的三个点代入y=-x2+x+6,可知只有点(9,3)在抛物线上,
因此抛物线上存在点R(9,3),使得四边形EBRF为平行四边形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

设抛物线过A(0,2),B(4,3),C三点,其中点C在直线上,且点C到抛物线对称轴的距离等于1,则抛物线的函数解析式为       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,抛物线过点,这条抛物线的对称轴与x轴交于点C,点P为射线CB上一个动点(不与点C重合),点D为此抛物线对称轴上一点,且?CPD=
(1)求抛物线的解析式;
(2)若点P的横坐标为m,△PCD的面积为S,求S与m之间的函数关系式;
(3)过点P作PE⊥DP,连接DE,F为DE的中点,试求线段BF的最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,△ABC的边AB在x轴上,∠ABC=90°,AB=BC,OA=1,OB=4,抛物线经过A、C两点.
(1)求抛物线的解析式及其顶点坐标;
(2)如图①,点P是抛物线上位于x轴下方的一点,点Q与点P关于抛物线的对称轴对称,过点P、Q分别向x轴作垂线,垂足为点D、E,记矩形DPQE的周长为d,求d的最大值,并求出使d最大值时点P的坐标;
(3)如图②,点M是抛物线上位于直线AC下方的一点,过点M作MF⊥AC于点F,连接MC,作MN∥BC交直线AC于点N,若MN将△MFC的面积分成2:3两部分,请确定M点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

方程x2+2x-1=0的根可看成函数y=x+2与函数的图象交点的横坐标,用此方法可推断方程x3+x-1=0的实数根x所在范围为( )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AB=1,BC=3,点E为BC边上的动点(点E与点B、C不重合),设BE=x.
操作:在射线BC上取一点F,使得EF=BE,以点F为直角顶点、EF为边作等腰直角三角形EFG,设△EFG与矩形ABCD重叠部分的面积为S.
(1)求S与x的函数关系式,并写出自变量x的取值范围;
(2)S是否存在最大值?若存在,请直接写出最大值,若不存在,请说明理由.
 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中,正确的是(  )
A.abc<0
B.a+c<b
C.b>2a
D.4a>2b﹣c

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=- (x-4)2+3,由此可知铅球推出的距离是________m.

查看答案和解析>>

同步练习册答案